<!-- DOCUMENT STYLE -->
<!-- <style>
body {
font-family: "Calibri";
padding-left:1.5cm;
padding-right:1.5cm;
}
</style> -->
<!-- HEADER -->
| | |
|---|---|
| <img src="https://www.ieseg.fr/wp-content/uploads/IESEG-Logo-2012-rgb.jpg" alt="drawing" width=100%/> | <span><br>Recommendation Systems<br>Module<br>Class: 2023 & 2024</span> |
<!-- CONTENT -->
---
## Overview
- Model evaluation (`eval.py`):
- Regression metrics
- RMSE
- MAE
- Classification metrics
- Precision
- Recall
- F1
- Ranking metrics
- NDCG
- `eval.evaluate` computes all above mentioned metrics
- Evaluate Top-N recommendations
- HR
- MAP
- Content based Recommender System (`model.py`)
- Helper functions (`utils.py`)
- `get_top_n`: Compute Top-N recommendations from predictions
- `predict_user_topn`: Compute Top-N recommendations for a user
<br>
| Useful Links | |
|---|---|
| <a href="https://surpriselib.com/"><img src="https://surpriselib.com/logo_white.svg" width="100%"></a> | <a href="https://scikit-learn.org/stable/"><img src="https://upload.wikimedia.org/wikipedia/commons/thumb/0/05/Scikit_learn_logo_small.svg/2560px-Scikit_learn_logo_small.svg.png" width="25%"></a> |
Raw data
{
"_id": null,
"home_page": "https://github.com/pnborchert",
"name": "ieseg-recsys",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "Recommender Systems IESEG",
"author": "Philipp Borchert",
"author_email": "p.borchert@ieseg.fr",
"download_url": "https://files.pythonhosted.org/packages/fd/0b/ddfd6286db14282f9b57eb24e6c608541f11d8df4637d723d76d735fc5d1/ieseg_recsys-0.24.1.tar.gz",
"platform": null,
"description": "<!-- DOCUMENT STYLE -->\r\n<!-- <style>\r\n body {\r\n font-family: \"Calibri\";\r\n padding-left:1.5cm;\r\n padding-right:1.5cm;\r\n }\r\n</style> -->\r\n\r\n<!-- HEADER -->\r\n| | |\r\n|---|---|\r\n| <img src=\"https://www.ieseg.fr/wp-content/uploads/IESEG-Logo-2012-rgb.jpg\" alt=\"drawing\" width=100%/> | <span><br>Recommendation Systems<br>Module<br>Class: 2023 & 2024</span> |\r\n\r\n<!-- CONTENT -->\r\n\r\n---\r\n\r\n## Overview\r\n\r\n- Model evaluation (`eval.py`):\r\n - Regression metrics\r\n - RMSE\r\n - MAE\r\n - Classification metrics\r\n - Precision\r\n - Recall\r\n - F1\r\n - Ranking metrics\r\n - NDCG\r\n - `eval.evaluate` computes all above mentioned metrics \r\n - Evaluate Top-N recommendations\r\n - HR\r\n - MAP\r\n- Content based Recommender System (`model.py`)\r\n- Helper functions (`utils.py`)\r\n - `get_top_n`: Compute Top-N recommendations from predictions \r\n - `predict_user_topn`: Compute Top-N recommendations for a user \r\n\r\n<br>\r\n\r\n| Useful Links | |\r\n|---|---|\r\n | <a href=\"https://surpriselib.com/\"><img src=\"https://surpriselib.com/logo_white.svg\" width=\"100%\"></a> | <a href=\"https://scikit-learn.org/stable/\"><img src=\"https://upload.wikimedia.org/wikipedia/commons/thumb/0/05/Scikit_learn_logo_small.svg/2560px-Scikit_learn_logo_small.svg.png\" width=\"25%\"></a> |\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Recommendation Systems - IESEG School of Management",
"version": "0.24.1",
"project_urls": {
"Homepage": "https://github.com/pnborchert"
},
"split_keywords": [
"recommender",
"systems",
"ieseg"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "fd0bddfd6286db14282f9b57eb24e6c608541f11d8df4637d723d76d735fc5d1",
"md5": "6b973bb10277fc7c2e0c84ba1e07fc24",
"sha256": "f0d32a8ed63d2306035a53667218c8f87ba09a73f02ccc77859c020943322054"
},
"downloads": -1,
"filename": "ieseg_recsys-0.24.1.tar.gz",
"has_sig": false,
"md5_digest": "6b973bb10277fc7c2e0c84ba1e07fc24",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 7912,
"upload_time": "2024-04-02T18:19:19",
"upload_time_iso_8601": "2024-04-02T18:19:19.850452Z",
"url": "https://files.pythonhosted.org/packages/fd/0b/ddfd6286db14282f9b57eb24e6c608541f11d8df4637d723d76d735fc5d1/ieseg_recsys-0.24.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-04-02 18:19:19",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "ieseg-recsys"
}