ieseg-recsys


Nameieseg-recsys JSON
Version 0.24.1 PyPI version JSON
download
home_pagehttps://github.com/pnborchert
SummaryRecommendation Systems - IESEG School of Management
upload_time2024-04-02 18:19:19
maintainerNone
docs_urlNone
authorPhilipp Borchert
requires_pythonNone
licenseMIT
keywords recommender systems ieseg
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <!-- DOCUMENT STYLE -->
<!-- <style>
    body {
        font-family: "Calibri";
        padding-left:1.5cm;
        padding-right:1.5cm;
    }
</style> -->

<!-- HEADER -->
|  |  |
|---|---|
| <img src="https://www.ieseg.fr/wp-content/uploads/IESEG-Logo-2012-rgb.jpg" alt="drawing" width=100%/> | <span><br>Recommendation Systems<br>Module<br>Class: 2023 & 2024</span> |

<!-- CONTENT -->

---

## Overview

- Model evaluation (`eval.py`):
    - Regression metrics
        - RMSE
        - MAE
    - Classification metrics
        - Precision
        - Recall
        - F1
    - Ranking metrics
        - NDCG
    - `eval.evaluate` computes all above mentioned metrics 
    - Evaluate Top-N recommendations
        - HR
        - MAP
- Content based Recommender System (`model.py`)
- Helper functions (`utils.py`)
    - `get_top_n`: Compute Top-N recommendations from predictions 
    - `predict_user_topn`: Compute Top-N recommendations for a user 

<br>

| Useful Links |  |
|---|---|
 | <a href="https://surpriselib.com/"><img src="https://surpriselib.com/logo_white.svg" width="100%"></a> | <a href="https://scikit-learn.org/stable/"><img src="https://upload.wikimedia.org/wikipedia/commons/thumb/0/05/Scikit_learn_logo_small.svg/2560px-Scikit_learn_logo_small.svg.png" width="25%"></a> |

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pnborchert",
    "name": "ieseg-recsys",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "Recommender Systems IESEG",
    "author": "Philipp Borchert",
    "author_email": "p.borchert@ieseg.fr",
    "download_url": "https://files.pythonhosted.org/packages/fd/0b/ddfd6286db14282f9b57eb24e6c608541f11d8df4637d723d76d735fc5d1/ieseg_recsys-0.24.1.tar.gz",
    "platform": null,
    "description": "<!-- DOCUMENT STYLE -->\r\n<!-- <style>\r\n    body {\r\n        font-family: \"Calibri\";\r\n        padding-left:1.5cm;\r\n        padding-right:1.5cm;\r\n    }\r\n</style> -->\r\n\r\n<!-- HEADER -->\r\n|  |  |\r\n|---|---|\r\n| <img src=\"https://www.ieseg.fr/wp-content/uploads/IESEG-Logo-2012-rgb.jpg\" alt=\"drawing\" width=100%/> | <span><br>Recommendation Systems<br>Module<br>Class: 2023 & 2024</span> |\r\n\r\n<!-- CONTENT -->\r\n\r\n---\r\n\r\n## Overview\r\n\r\n- Model evaluation (`eval.py`):\r\n    - Regression metrics\r\n        - RMSE\r\n        - MAE\r\n    - Classification metrics\r\n        - Precision\r\n        - Recall\r\n        - F1\r\n    - Ranking metrics\r\n        - NDCG\r\n    - `eval.evaluate` computes all above mentioned metrics \r\n    - Evaluate Top-N recommendations\r\n        - HR\r\n        - MAP\r\n- Content based Recommender System (`model.py`)\r\n- Helper functions (`utils.py`)\r\n    - `get_top_n`: Compute Top-N recommendations from predictions \r\n    - `predict_user_topn`: Compute Top-N recommendations for a user \r\n\r\n<br>\r\n\r\n| Useful Links |  |\r\n|---|---|\r\n | <a href=\"https://surpriselib.com/\"><img src=\"https://surpriselib.com/logo_white.svg\" width=\"100%\"></a> | <a href=\"https://scikit-learn.org/stable/\"><img src=\"https://upload.wikimedia.org/wikipedia/commons/thumb/0/05/Scikit_learn_logo_small.svg/2560px-Scikit_learn_logo_small.svg.png\" width=\"25%\"></a> |\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Recommendation Systems - IESEG School of Management",
    "version": "0.24.1",
    "project_urls": {
        "Homepage": "https://github.com/pnborchert"
    },
    "split_keywords": [
        "recommender",
        "systems",
        "ieseg"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fd0bddfd6286db14282f9b57eb24e6c608541f11d8df4637d723d76d735fc5d1",
                "md5": "6b973bb10277fc7c2e0c84ba1e07fc24",
                "sha256": "f0d32a8ed63d2306035a53667218c8f87ba09a73f02ccc77859c020943322054"
            },
            "downloads": -1,
            "filename": "ieseg_recsys-0.24.1.tar.gz",
            "has_sig": false,
            "md5_digest": "6b973bb10277fc7c2e0c84ba1e07fc24",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 7912,
            "upload_time": "2024-04-02T18:19:19",
            "upload_time_iso_8601": "2024-04-02T18:19:19.850452Z",
            "url": "https://files.pythonhosted.org/packages/fd/0b/ddfd6286db14282f9b57eb24e6c608541f11d8df4637d723d76d735fc5d1/ieseg_recsys-0.24.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-02 18:19:19",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "ieseg-recsys"
}
        
Elapsed time: 0.25089s