| Name | ilimikudi JSON |
| Version |
0.3.1
JSON |
| download |
| home_page | None |
| Summary | Datasets for Gen AI customer care and data processing for Nigerian Banks and Fintech |
| upload_time | 2024-12-12 06:50:53 |
| maintainer | None |
| docs_url | None |
| author | thelaycon |
| requires_python | <4.0,>=3.10 |
| license | None |
| keywords |
|
| VCS |
|
| bugtrack_url |
|
| requirements |
No requirements were recorded.
|
| Travis-CI |
No Travis.
|
| coveralls test coverage |
No coveralls.
|
# IlimiKudi
**IlimiKudi** provides access to Fintech and Banking datasets like blog posts and support articles from platforms such as GTBank, Paystack, Moniepoint, and OPay. It is designed for use in AI-powered customer applications, including retrieval-augmented generation (RAG) for NLP.
## Features
- Access datasets stored in CSV format.
- Query an integrated database with multiple data sources.
## Installation
Install the required dependencies via `pip`:
```bash
pip install pandas duckdb
```
## Usage
### Accessing CSV Datasets
Load datasets using the following classes:
```python
from ilimikudi import GTBSupportPosts
# Access GTB Support Posts data
gtb_posts = GTBSupportPosts()
data = gtb_posts.get_data() # Return as pandas DataFrame
print(data.head())
```
Available classes for CSV files:
- `GTBSupportPosts`
- `MergedData`
- `MoniepointBlogPosts`
- `OpayBlogPosts`
- `PaystackBlogPosts`
- `PaystackSupportPosts`
### Querying the Integrated Database
Query the integrated database:
```python
from ilimikudi import MergedDB
# Query the integrated database
db = MergedDB()
result = db.query() # Default: SELECT * FROM unified
print(result.head())
```
Custom queries can also be executed:
```python
custom_query = "SELECT column_name FROM unified WHERE condition"
result = db.query(custom_query)
print(result)
```
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
Raw data
{
"_id": null,
"home_page": null,
"name": "ilimikudi",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.10",
"maintainer_email": null,
"keywords": null,
"author": "thelaycon",
"author_email": "tobitobitobiwhy@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/7a/a2/67ac6b44f9088d2b3eea1f9f3bb6e6da71976342c33099d054337957a3fc/ilimikudi-0.3.1.tar.gz",
"platform": null,
"description": "# IlimiKudi\n\n**IlimiKudi** provides access to Fintech and Banking datasets like blog posts and support articles from platforms such as GTBank, Paystack, Moniepoint, and OPay. It is designed for use in AI-powered customer applications, including retrieval-augmented generation (RAG) for NLP.\n\n## Features\n- Access datasets stored in CSV format.\n- Query an integrated database with multiple data sources.\n\n## Installation\n\nInstall the required dependencies via `pip`:\n\n```bash\npip install pandas duckdb\n```\n\n## Usage\n\n### Accessing CSV Datasets\n\nLoad datasets using the following classes:\n\n```python\nfrom ilimikudi import GTBSupportPosts\n\n# Access GTB Support Posts data\ngtb_posts = GTBSupportPosts()\ndata = gtb_posts.get_data() # Return as pandas DataFrame\nprint(data.head())\n```\n\nAvailable classes for CSV files:\n- `GTBSupportPosts`\n- `MergedData`\n- `MoniepointBlogPosts`\n- `OpayBlogPosts`\n- `PaystackBlogPosts`\n- `PaystackSupportPosts`\n\n### Querying the Integrated Database\n\nQuery the integrated database:\n\n```python\nfrom ilimikudi import MergedDB\n\n# Query the integrated database\ndb = MergedDB()\nresult = db.query() # Default: SELECT * FROM unified\nprint(result.head())\n```\n\nCustom queries can also be executed:\n\n```python\ncustom_query = \"SELECT column_name FROM unified WHERE condition\"\nresult = db.query(custom_query)\nprint(result)\n```\n\n## License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n",
"bugtrack_url": null,
"license": null,
"summary": "Datasets for Gen AI customer care and data processing for Nigerian Banks and Fintech",
"version": "0.3.1",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "77a773ceca055b8f66029e9021d488e118c128ca54d03dde8b72f18b24e3e0a5",
"md5": "3eef4527365bd83750f9706ee02f1524",
"sha256": "adee3b29d172982ec6fde5fedca6575fcde1e1f91858f49644adef484fcbf084"
},
"downloads": -1,
"filename": "ilimikudi-0.3.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "3eef4527365bd83750f9706ee02f1524",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.10",
"size": 1611444,
"upload_time": "2024-12-12T06:50:50",
"upload_time_iso_8601": "2024-12-12T06:50:50.738488Z",
"url": "https://files.pythonhosted.org/packages/77/a7/73ceca055b8f66029e9021d488e118c128ca54d03dde8b72f18b24e3e0a5/ilimikudi-0.3.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "7aa267ac6b44f9088d2b3eea1f9f3bb6e6da71976342c33099d054337957a3fc",
"md5": "e50ebc8e810d49ace3a347e7479d602f",
"sha256": "279ff3751661b6ee9d86de8d103fc205087840898fd9f456f5d3e8ec3c092fbd"
},
"downloads": -1,
"filename": "ilimikudi-0.3.1.tar.gz",
"has_sig": false,
"md5_digest": "e50ebc8e810d49ace3a347e7479d602f",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.10",
"size": 1604155,
"upload_time": "2024-12-12T06:50:53",
"upload_time_iso_8601": "2024-12-12T06:50:53.736744Z",
"url": "https://files.pythonhosted.org/packages/7a/a2/67ac6b44f9088d2b3eea1f9f3bb6e6da71976342c33099d054337957a3fc/ilimikudi-0.3.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-12 06:50:53",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "ilimikudi"
}