im-data-manager-metadata


Nameim-data-manager-metadata JSON
Version 2.0.0 PyPI version JSON
download
home_pagehttps://github.com/InformaticsMatters/squonk2-data-manager-metadata
SummaryA framework for Informatics Matters dataset metadata
upload_time2024-04-11 16:49:23
maintainerNone
docs_urlNone
authorTim Dudgeon
requires_python<4,>=3
licenseMIT
keywords jenkins
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Informatics Matters Data-Manager Metadata
=========================================

A metadata framework package for the Data Tier Data Manager service.
The ``im-data-manager-metadata`` package is a set of utilities
employed by the `Informatics Matters`_ Data-Manager service
as a metadata framework for molecular datasets.

.. image:: /docs/data-manager-metadata.png
  :width: 800
  :alt: Data Manager Metadata Classes

Dependencies
************
- PyYAML>=5.3


Running the Unit Tests
**********************

    >>> python -m venv venv
    >>> source venv/bin/activate
    >>> pip install --upgrade pip
    >>> pip install -r package-requirements.txt
    >>> python -m unittest test.test_metadata
    >>> python -m unittest test.test_api

Running the Command Line Interface *md-manage.py*
*************************************************

The data manager metadata command line interface can be used by applications to
add annotations to the Metadata by means of an annotations.json files that can be
uploaded.

    - help functions. Note that the *annotation_type* (lb, fd or se) is required.

    >>> python md_manage.py -h
    >>> python md_manage.py lb -h
    >>> python md_manage.py fd -h
    >>> python md_manage.py se -h

    - Creates a label annotation in an annotations.json file placed in test/output.
      Note that the *label* is required. Running the command again will create a second annotation
      in the same file (i.e. a list of two).

    >>> python md_manage.py lb test/output/results.sdf 'foo' -lv='bar'

    - Creates a FieldsDescriptorAnnotation in an annotations.json file placed in test/output.
      If the annotations.json file exists it will add it to the list of annotations in the file.

    >>> python md_manage.py fd test/output/results.sdf -fo='squonk2-job'
                            -fp='minimizedAffinity,number,Binding affinity
                            predicted by smina using the vinardo scoring function,true,true'
                            -fd='Run smina docking'

    - Creates a service execution annotation in an annotations.json file placed in test/output.

    >>> python md_manage.py se test/output/results.sdf -su=bob -sys='run-smina'
                           -sy='test/input/virtual-screening.yaml'
                           -sp param1=val1 param2=val2 -fo='squonk2-job'
                           -fp='minimizedAffinity,number,Binding affinity predicted,true,true'
                           -fd='Run smina docking'

Contributing
************

The project uses: -

- `pre-commit`_ to enforce linting of files prior to committing them to the
  upstream repository
- `Commitizen`_ to enforce a [Convention Commit] commit message format
- `Black`_ as a code formatter

You **MUST** comply with these choices in order to  contribute to the project.

To get started review the pre-commit utility and the conventional commit style
and then set-up your local clone by following the **Installation** and
**Quick Start** sections: -

    >>> pip install -r package-requirements.txt
    >>> pre-commit install -t commit-msg -t pre-commit

Now the project's rules will run on every commit, and you can check the
current health of your clone with: -

    >>> pre-commit run --all-files

.. _Informatics Matters: http://www.informaticsmatters.com
.. _black: https://black.readthedocs.io/en/stable
.. _commitizen: https://commitizen-tools.github.io/commitizen/
.. _pre-commit: https://pre-commit.com

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/InformaticsMatters/squonk2-data-manager-metadata",
    "name": "im-data-manager-metadata",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4,>=3",
    "maintainer_email": null,
    "keywords": "jenkins",
    "author": "Tim Dudgeon",
    "author_email": "tdudgeon@informaticsmatters.com",
    "download_url": null,
    "platform": "any",
    "description": "Informatics Matters Data-Manager Metadata\n=========================================\n\nA metadata framework package for the Data Tier Data Manager service.\nThe ``im-data-manager-metadata`` package is a set of utilities\nemployed by the `Informatics Matters`_ Data-Manager service\nas a metadata framework for molecular datasets.\n\n.. image:: /docs/data-manager-metadata.png\n  :width: 800\n  :alt: Data Manager Metadata Classes\n\nDependencies\n************\n- PyYAML>=5.3\n\n\nRunning the Unit Tests\n**********************\n\n    >>> python -m venv venv\n    >>> source venv/bin/activate\n    >>> pip install --upgrade pip\n    >>> pip install -r package-requirements.txt\n    >>> python -m unittest test.test_metadata\n    >>> python -m unittest test.test_api\n\nRunning the Command Line Interface *md-manage.py*\n*************************************************\n\nThe data manager metadata command line interface can be used by applications to\nadd annotations to the Metadata by means of an annotations.json files that can be\nuploaded.\n\n    - help functions. Note that the *annotation_type* (lb, fd or se) is required.\n\n    >>> python md_manage.py -h\n    >>> python md_manage.py lb -h\n    >>> python md_manage.py fd -h\n    >>> python md_manage.py se -h\n\n    - Creates a label annotation in an annotations.json file placed in test/output.\n      Note that the *label* is required. Running the command again will create a second annotation\n      in the same file (i.e. a list of two).\n\n    >>> python md_manage.py lb test/output/results.sdf 'foo' -lv='bar'\n\n    - Creates a FieldsDescriptorAnnotation in an annotations.json file placed in test/output.\n      If the annotations.json file exists it will add it to the list of annotations in the file.\n\n    >>> python md_manage.py fd test/output/results.sdf -fo='squonk2-job'\n                            -fp='minimizedAffinity,number,Binding affinity\n                            predicted by smina using the vinardo scoring function,true,true'\n                            -fd='Run smina docking'\n\n    - Creates a service execution annotation in an annotations.json file placed in test/output.\n\n    >>> python md_manage.py se test/output/results.sdf -su=bob -sys='run-smina'\n                           -sy='test/input/virtual-screening.yaml'\n                           -sp param1=val1 param2=val2 -fo='squonk2-job'\n                           -fp='minimizedAffinity,number,Binding affinity predicted,true,true'\n                           -fd='Run smina docking'\n\nContributing\n************\n\nThe project uses: -\n\n- `pre-commit`_ to enforce linting of files prior to committing them to the\n  upstream repository\n- `Commitizen`_ to enforce a [Convention Commit] commit message format\n- `Black`_ as a code formatter\n\nYou **MUST** comply with these choices in order to  contribute to the project.\n\nTo get started review the pre-commit utility and the conventional commit style\nand then set-up your local clone by following the **Installation** and\n**Quick Start** sections: -\n\n    >>> pip install -r package-requirements.txt\n    >>> pre-commit install -t commit-msg -t pre-commit\n\nNow the project's rules will run on every commit, and you can check the\ncurrent health of your clone with: -\n\n    >>> pre-commit run --all-files\n\n.. _Informatics Matters: http://www.informaticsmatters.com\n.. _black: https://black.readthedocs.io/en/stable\n.. _commitizen: https://commitizen-tools.github.io/commitizen/\n.. _pre-commit: https://pre-commit.com\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A framework for Informatics Matters dataset metadata",
    "version": "2.0.0",
    "project_urls": {
        "Homepage": "https://github.com/InformaticsMatters/squonk2-data-manager-metadata"
    },
    "split_keywords": [
        "jenkins"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "77e8d09d4ae00755fb80c1f1f85dfe67a196bfcde17a46e51f2ba37f841cc02a",
                "md5": "c151e88227596cc7a83e5659a86286fc",
                "sha256": "441788ee5cd441c8e3e22bdd3fdd8db0d8806d622073fb4e5799d904f20a5c09"
            },
            "downloads": -1,
            "filename": "im_data_manager_metadata-2.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c151e88227596cc7a83e5659a86286fc",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4,>=3",
            "size": 18687,
            "upload_time": "2024-04-11T16:49:23",
            "upload_time_iso_8601": "2024-04-11T16:49:23.106879Z",
            "url": "https://files.pythonhosted.org/packages/77/e8/d09d4ae00755fb80c1f1f85dfe67a196bfcde17a46e51f2ba37f841cc02a/im_data_manager_metadata-2.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-11 16:49:23",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "InformaticsMatters",
    "github_project": "squonk2-data-manager-metadata",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "im-data-manager-metadata"
}
        
Elapsed time: 2.41797s