[![PyPI Latest Release](https://img.shields.io/pypi/v/imWeightedThresholdedheq.svg)](https://pypi.org/project/imWeightedThresholdedheq/)
[![Package Status](https://img.shields.io/pypi/status/imWeightedThresholdedheq.svg)](https://pypi.org/project/imWeightedThresholdedheq/)
[![Downloads](https://pepy.tech/badge/imWeightedThresholdedheq)](https://pepy.tech/project/imWeightedThresholdedheq)
[![License](https://img.shields.io/pypi/l/imWeightedThresholdedheq.svg)](https://github.com/Mamdasn/imWeightedThresholdedheq/blob/main/LICENSE)
![Repository Size](https://img.shields.io/github/languages/code-size/mamdasn/imWeightedThresholdedheq)
# imWeightedThresholdedheq
This module attempts to enhance contrast of a given image or video by employing a method called weighted thresholded histogram equalization (WTHE). This method seeks to improve on preformance of the conventional histogram equalization method by adding controllable parameters to it. By weighting and thresholding the PMF of the image before performing histogram equalization, two parameters are introduced that can be changed manually, but by experimenting on a variety of images, optimal values for both parameters are calculated (r = 0.5, v = 0.5).
You can access the article that came up with this method [here](https://www.researchgate.net/publication/3183125_Ward_RK_Fast_ImageVideo_Contrast_Enhancement_Based_on_Weighted_Thresholded_Histogram_Equalization_IEEE_Trans_Consumer_Electronics_532_757-764).
## Installation
Run the following to install:
```python
pip install imWeightedThresholdedheq
```
## Usage
For images
```Bash
imWeightedThresholdedheq --input 'Plane.jpg' --output 'Plane-imWeightedThresholdedheq.jpg'
```
For videos
```Bash
vid2dhisteq --input 'assets/Arctic-Convoy-With-Giant-Mack-Trucks.mp4' --output 'assets/Arctic-Convoy-With-Giant-Mack-Trucks-imWeightedThresholdedheq.mp4'
```
Or
```Python
import numpy as np
import cv2
from imWeightedThresholdedheq import imWTHeq
cap = cv2.VideoCapture('assets/Arctic-Convoy-With-Giant-Mack-Trucks.mp4')
# output video without sound
video_out_name = 'assets/Arctic-Convoy-With-Giant-Mack-Trucks-imWeightedThresholdedheq.mp4'
i = 0
j = 0
Wout_list = np.zeros((10))
while(cap.isOpened()):
ret, frame = cap.read()
if ret == False:
break
frame_hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
frame_v = frame_hsv[:, :, 2].copy()
image_heq, Wout = imWTHeq(frame_v, Wout_list, r=0.5, v=0.5)
Wout_list[j] = Wout
j += 1
if j == 10:
j = 0
frame_hsv[:, :, 2] = image_heq
frame_eq = cv2.cvtColor(frame_hsv, cv2.COLOR_HSV2BGR)
fps = cap.get(cv2.CAP_PROP_FPS)
if i==0:
h, w, d = frame_eq.shape
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video_out = cv2.VideoWriter(video_out_name, fourcc, fps, (w, h))
video_out.write(frame_eq)
i+=1
cv2.destroyAllWindows()
video_out.release()
```
## Showcase
* A 5 minutes comparative video: https://youtu.be/5H_EY_ugmzg
* A sample video and its enhanced version by WTHE method
[![Arctic-Convoy-With-Giant-Mack-Trucks-Orig-Heq.gif GIF](https://raw.githubusercontent.com/Mamdasn/imWeightedThresholdedheq/main/assets/Arctic-Convoy-With-Giant-Mack-Trucks-Orig-Heq.gif "Arctic-Convoy-With-Giant-Mack-Trucks-Orig-Heq.gif GIF")](https://youtu.be/5H_EY_ugmzg)
Raw data
{
"_id": null,
"home_page": "https://github.com/Mamdasn/imWeightedThresholdedheq",
"name": "imWeightedThresholdedheq",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "python,histogram,HE,hist equalization,histogram based equalization,weighted thresholded histogram equalization,contrast enhancement",
"author": "mamdasn s",
"author_email": "<mamdassn@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/1f/39/d7437021eafab3353e682cc26332c1c1090002876fc0d0b263f7fcf416b1/imWeightedThresholdedheq-1.0.2.tar.gz",
"platform": null,
"description": "\n[![PyPI Latest Release](https://img.shields.io/pypi/v/imWeightedThresholdedheq.svg)](https://pypi.org/project/imWeightedThresholdedheq/)\n[![Package Status](https://img.shields.io/pypi/status/imWeightedThresholdedheq.svg)](https://pypi.org/project/imWeightedThresholdedheq/)\n[![Downloads](https://pepy.tech/badge/imWeightedThresholdedheq)](https://pepy.tech/project/imWeightedThresholdedheq)\n[![License](https://img.shields.io/pypi/l/imWeightedThresholdedheq.svg)](https://github.com/Mamdasn/imWeightedThresholdedheq/blob/main/LICENSE)\n![Repository Size](https://img.shields.io/github/languages/code-size/mamdasn/imWeightedThresholdedheq)\n\n\n# imWeightedThresholdedheq\nThis module attempts to enhance contrast of a given image or video by employing a method called weighted thresholded histogram equalization (WTHE). This method seeks to improve on preformance of the conventional histogram equalization method by adding controllable parameters to it. By weighting and thresholding the PMF of the image before performing histogram equalization, two parameters are introduced that can be changed manually, but by experimenting on a variety of images, optimal values for both parameters are calculated (r = 0.5, v = 0.5).\n\nYou can access the article that came up with this method [here](https://www.researchgate.net/publication/3183125_Ward_RK_Fast_ImageVideo_Contrast_Enhancement_Based_on_Weighted_Thresholded_Histogram_Equalization_IEEE_Trans_Consumer_Electronics_532_757-764).\n\n\n## Installation\n\nRun the following to install:\n\n```python\npip install imWeightedThresholdedheq\n```\n\n## Usage\n\nFor images\n```Bash\nimWeightedThresholdedheq --input 'Plane.jpg' --output 'Plane-imWeightedThresholdedheq.jpg'\n```\nFor videos\n```Bash\nvid2dhisteq --input 'assets/Arctic-Convoy-With-Giant-Mack-Trucks.mp4' --output 'assets/Arctic-Convoy-With-Giant-Mack-Trucks-imWeightedThresholdedheq.mp4'\n```\nOr\n```Python\nimport numpy as np\nimport cv2\nfrom imWeightedThresholdedheq import imWTHeq\n\ncap = cv2.VideoCapture('assets/Arctic-Convoy-With-Giant-Mack-Trucks.mp4')\n\n# output video without sound\nvideo_out_name = 'assets/Arctic-Convoy-With-Giant-Mack-Trucks-imWeightedThresholdedheq.mp4'\ni = 0\nj = 0\nWout_list = np.zeros((10))\nwhile(cap.isOpened()):\n ret, frame = cap.read()\n if ret == False:\n break\n frame_hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)\n frame_v = frame_hsv[:, :, 2].copy()\n image_heq, Wout = imWTHeq(frame_v, Wout_list, r=0.5, v=0.5)\n Wout_list[j] = Wout\n j += 1\n if j == 10:\n j = 0\n frame_hsv[:, :, 2] = image_heq\n frame_eq = cv2.cvtColor(frame_hsv, cv2.COLOR_HSV2BGR)\n\n fps = cap.get(cv2.CAP_PROP_FPS)\n if i==0:\n h, w, d = frame_eq.shape\n fourcc = cv2.VideoWriter_fourcc(*'mp4v')\n video_out = cv2.VideoWriter(video_out_name, fourcc, fps, (w, h))\n video_out.write(frame_eq)\n\n i+=1\ncv2.destroyAllWindows()\nvideo_out.release()\n```\n\n\n## Showcase\n* A 5 minutes comparative video: https://youtu.be/5H_EY_ugmzg\n* A sample video and its enhanced version by WTHE method\n[![Arctic-Convoy-With-Giant-Mack-Trucks-Orig-Heq.gif GIF](https://raw.githubusercontent.com/Mamdasn/imWeightedThresholdedheq/main/assets/Arctic-Convoy-With-Giant-Mack-Trucks-Orig-Heq.gif \"Arctic-Convoy-With-Giant-Mack-Trucks-Orig-Heq.gif GIF\")](https://youtu.be/5H_EY_ugmzg)\n",
"bugtrack_url": null,
"license": "",
"summary": "This module attempts to enhance contrast of a given image by employing a method called weighted thresholded histogram equalization (WTHE).",
"version": "1.0.2",
"project_urls": {
"Homepage": "https://github.com/Mamdasn/imWeightedThresholdedheq"
},
"split_keywords": [
"python",
"histogram",
"he",
"hist equalization",
"histogram based equalization",
"weighted thresholded histogram equalization",
"contrast enhancement"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "23dd3c21ecaaccd7d9651c063c80c832423a045cb22b83f56ac1ab1a817606b3",
"md5": "39da86be9642b47f4c9cbafa7f6c662e",
"sha256": "46382bd51bb2afd5a17f07deaa9265110137dc92b7052d56a681325422d65345"
},
"downloads": -1,
"filename": "imWeightedThresholdedheq-1.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "39da86be9642b47f4c9cbafa7f6c662e",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 17877,
"upload_time": "2023-12-26T16:28:28",
"upload_time_iso_8601": "2023-12-26T16:28:28.812052Z",
"url": "https://files.pythonhosted.org/packages/23/dd/3c21ecaaccd7d9651c063c80c832423a045cb22b83f56ac1ab1a817606b3/imWeightedThresholdedheq-1.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1f39d7437021eafab3353e682cc26332c1c1090002876fc0d0b263f7fcf416b1",
"md5": "1e396496e9c7b42145ae08d0b046af4c",
"sha256": "d80e2f599660609177cabde779ce4ab3ad0f25c8e17fe3ffcf8af11a9c1c25e5"
},
"downloads": -1,
"filename": "imWeightedThresholdedheq-1.0.2.tar.gz",
"has_sig": false,
"md5_digest": "1e396496e9c7b42145ae08d0b046af4c",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 223811,
"upload_time": "2023-12-26T16:28:30",
"upload_time_iso_8601": "2023-12-26T16:28:30.563831Z",
"url": "https://files.pythonhosted.org/packages/1f/39/d7437021eafab3353e682cc26332c1c1090002876fc0d0b263f7fcf416b1/imWeightedThresholdedheq-1.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-12-26 16:28:30",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Mamdasn",
"github_project": "imWeightedThresholdedheq",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "imweightedthresholdedheq"
}