imagej-rolling-ball


Nameimagej-rolling-ball JSON
Version 2024.6.1 PyPI version JSON
download
home_pagehttps://pypi.org/project/imagej-rolling-ball
SummaryPython wrapper for ImageJ's rolling ball background subtraction using pyimagej
upload_time2024-07-10 04:37:32
maintainerNone
docs_urlNone
authorYu-An Chen
requires_python<4.0,>=3.8
licenseNone
keywords microscopy imagej background subtraction image processing
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # imagej-rolling-ball

Python wrapper for [ImageJ's rolling ball background
subtraction](https://imagej.net/ij/developer/api/ij/ij/plugin/filter/BackgroundSubtracter.html#rollingBallBackground(ij.process.ImageProcessor,double,boolean,boolean,boolean,boolean,boolean))
using [pyimagej](https://github.com/imagej/pyimagej).

## Install

1. Follow [pyimagej's installation
   instruction](https://py.imagej.net/en/latest/Install.html)

1. Install `imagej-rolling-ball` from pypi

    ```bash
    python -m pip install imagej-rolling-ball
    ```

1. To work with large images, `dask` and `zarr` were used in the package. You
   can install them yourself or specify the `[large]` install

    ```bash
    python -m pip install imagej-rolling-ball[large]
    ```

1. To work with pyramidal ome-tiff images, `palom` was used. Install the `[wsi]`
   extras

    ```bash
    python -m pip install imagej-rolling-ball[wsi]
    ```

## Usage

The key parameter is the rolling ball radius, according to the
[doc](https://imagej.nih.gov/ij/docs/menus/process.html#background), the radius

> should be at least as large as the radius of the largest object in the image
> that is not part of the background

**NOTE:** While the java class `BackgroundSubtracter` handles RGB image, the
current wrapper methods only accepts 2D arrays. One can process each channel
separately and combine all the processed channels using `numpy.array` or
`numpy.dstack`


### Basic usage

```python
import imagej_rolling_ball
import numpy

bg_subtracter = imagej_rolling_ball.BackgroundSubtracter(java_options='-Xmx1g')
img = numpy.eye(5) + 1

print('img\n', img, '\n')
print('radius=1')
print(bg_subtracter.rolling_ball_background(img, 1), '\n')
print('radius=2.5')
print(bg_subtracter.rolling_ball_background(img, 2.5), '\n')
```

And the output of the above script should be

```python
img
 [[2. 1. 1. 1. 1.]
 [1. 2. 1. 1. 1.]
 [1. 1. 2. 1. 1.]
 [1. 1. 1. 2. 1.]
 [1. 1. 1. 1. 2.]] 

radius=1
[[0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0.]] 

radius=2
[[0.        0.        0.        0.        0.       ]
 [0.        0.7912879 0.        0.        0.       ]
 [0.        0.        0.7912879 0.        0.       ]
 [0.        0.        0.        0.7912879 0.       ]
 [0.        0.        0.        0.        0.       ]] 
```

### Process large image

For large array (e.g. array that contains more than 2,147,483,647 elements), the
`BackgroundSubtracter.rolling_ball_background_chunked` method is for such use
case. It returns a `dask.array` by default or a `zarr.core.Array` if
`compute=True` is set.


```python
In [1]: import imagej_rolling_ball
   ...: import numpy
   ...: 
   ...: bg_subtracter = imagej_rolling_ball.BackgroundSubtracter(java_options='-Xmx4g')
   ...: img = numpy.eye(10_000, dtype='uint8') + 1
ImageJ Version: 2.14.0/1.54f

In [2]: bg_subtracter.rolling_ball_background_chunked(img, 50, 1024*5)
Operating in headless mode - the original ImageJ will have limited functionality.
Out[2]: dask.array<_trim, shape=(10000, 10000), dtype=uint8, chunksize=(5120, 5120), chunktype=numpy.ndarray>

In [3]: bg_subtracter.rolling_ball_background_chunked(img, 50, 1024*5).compute()
Out[3]: 
array([[1, 0, 0, ..., 0, 0, 0],
       [0, 1, 0, ..., 0, 0, 0],
       [0, 0, 1, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 1, 0, 0],
       [0, 0, 0, ..., 0, 1, 0],
       [0, 0, 0, ..., 0, 0, 1]], dtype=uint8)

In [4]: bg_subtracter.rolling_ball_background_chunked(img, 50, 1024*5, compute=True)
Out[4]: <zarr.core.Array (10000, 10000) uint8>
```

### Process chunked ome-tiff in command line interface

Use `rolling-ball` command to process multi-channel tiff file and write the
processed image to disk as a pyramidal ome-tiff. `python -m pip install
imagej-rolling-ball[wsi]` is required.

```bash
NAME
    rolling-ball

SYNOPSIS
    rolling-ball IMG_PATH RADIUS <flags>

POSITIONAL ARGUMENTS
    IMG_PATH
    RADIUS

FLAGS
    --out_path=OUT_PATH
        Type: Optional[str]
        Default: None
    -t, --target_chunk_size=TARGET_CHUNK_SIZE
        Type: int
        Default: 5120
    --overwrite=OVERWRITE
        Type: bool
        Default: False
    -j, --java_options=JAVA_OPTIONS
        Type: Optional[str]
        Default: None
    -i, --imagej_version=IMAGEJ_VERSION
        Type: Optional[str]
        Default: None
    -p, --pyramid_config=PYRAMID_CONFIG
        Type: Optional[dict]
        Default: None
    --rolling_ball_kwargs=ROLLING_BALL_KWARGS
        Type: Optional[dict]
        Default: None
    -n, --num_workers=NUM_WORKERS
        Type: int
        Default: 4
```

**NOTES:**

- To pass in JVM options, e.g. set max heap size (`-Xmx4g`), use the syntax of
   `-j="-Xmx4g"`
- The defaut Java heap size is 70% of the available memory
- Increase `--num_workers` may speed up processing time, default is `4`
- The default output file will be generated next to the input file, the file
  name ends with `-ij_rolling_ball_{radius}.ome.tif`

**Example commands:**

- Minimal command, process file using rolling ball radius of `100` and
  writebackground-subtracted image to disk

    ```bash
    rolling-ball path/to/input/file.ome.tif 100
    ```

- Write background image instead of subtracted image (`--rolling_ball_kwargs
  "{'create_background': True}"`) to file; set JVM max heap size to 4 GB
  (`-j="-Xmx4g"`) and use 8 threads (`-n=8`)

    ```bash
    rolling-ball path/to/input/file.ome.tif 100 \
        --out_path path/to/input/file-background_100.ome.tif \
        --rolling_ball_kwargs "{'create_background': True}" \
        -j="-Xmx4g" \ 
        --overwrite \
        -n=8
    ```

### Docker usage

The docker image can be build from the github repo or be pulled from the docker
hub.

To process an image file (`input.ome.tif`) with rolling ball radius `50` in the
current directory:

```bash
 docker run -it --rm -v "$(pwd)":/data \
    yuanchen12/imagej-rolling-ball \
    rolling-ball /data/input.ome.tif 50
```

When the process is completed, output file `input-ij_rolling_ball_50.ome.tif`
will be generated.

            

Raw data

            {
    "_id": null,
    "home_page": "https://pypi.org/project/imagej-rolling-ball",
    "name": "imagej-rolling-ball",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.8",
    "maintainer_email": null,
    "keywords": "microscopy, imagej, background subtraction, image processing",
    "author": "Yu-An Chen",
    "author_email": "atwood12@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/43/4e/de939f15749e0939f65f71fad6b5bf6ead1c4e92e0582fda3ed339e185ff/imagej_rolling_ball-2024.6.1.tar.gz",
    "platform": null,
    "description": "# imagej-rolling-ball\n\nPython wrapper for [ImageJ's rolling ball background\nsubtraction](https://imagej.net/ij/developer/api/ij/ij/plugin/filter/BackgroundSubtracter.html#rollingBallBackground(ij.process.ImageProcessor,double,boolean,boolean,boolean,boolean,boolean))\nusing [pyimagej](https://github.com/imagej/pyimagej).\n\n## Install\n\n1. Follow [pyimagej's installation\n   instruction](https://py.imagej.net/en/latest/Install.html)\n\n1. Install `imagej-rolling-ball` from pypi\n\n    ```bash\n    python -m pip install imagej-rolling-ball\n    ```\n\n1. To work with large images, `dask` and `zarr` were used in the package. You\n   can install them yourself or specify the `[large]` install\n\n    ```bash\n    python -m pip install imagej-rolling-ball[large]\n    ```\n\n1. To work with pyramidal ome-tiff images, `palom` was used. Install the `[wsi]`\n   extras\n\n    ```bash\n    python -m pip install imagej-rolling-ball[wsi]\n    ```\n\n## Usage\n\nThe key parameter is the rolling ball radius, according to the\n[doc](https://imagej.nih.gov/ij/docs/menus/process.html#background), the radius\n\n> should be at least as large as the radius of the largest object in the image\n> that is not part of the background\n\n**NOTE:** While the java class `BackgroundSubtracter` handles RGB image, the\ncurrent wrapper methods only accepts 2D arrays. One can process each channel\nseparately and combine all the processed channels using `numpy.array` or\n`numpy.dstack`\n\n\n### Basic usage\n\n```python\nimport imagej_rolling_ball\nimport numpy\n\nbg_subtracter = imagej_rolling_ball.BackgroundSubtracter(java_options='-Xmx1g')\nimg = numpy.eye(5) + 1\n\nprint('img\\n', img, '\\n')\nprint('radius=1')\nprint(bg_subtracter.rolling_ball_background(img, 1), '\\n')\nprint('radius=2.5')\nprint(bg_subtracter.rolling_ball_background(img, 2.5), '\\n')\n```\n\nAnd the output of the above script should be\n\n```python\nimg\n [[2. 1. 1. 1. 1.]\n [1. 2. 1. 1. 1.]\n [1. 1. 2. 1. 1.]\n [1. 1. 1. 2. 1.]\n [1. 1. 1. 1. 2.]] \n\nradius=1\n[[0. 0. 0. 0. 0.]\n [0. 0. 0. 0. 0.]\n [0. 0. 0. 0. 0.]\n [0. 0. 0. 0. 0.]\n [0. 0. 0. 0. 0.]] \n\nradius=2\n[[0.        0.        0.        0.        0.       ]\n [0.        0.7912879 0.        0.        0.       ]\n [0.        0.        0.7912879 0.        0.       ]\n [0.        0.        0.        0.7912879 0.       ]\n [0.        0.        0.        0.        0.       ]] \n```\n\n### Process large image\n\nFor large array (e.g. array that contains more than 2,147,483,647 elements), the\n`BackgroundSubtracter.rolling_ball_background_chunked` method is for such use\ncase. It returns a `dask.array` by default or a `zarr.core.Array` if\n`compute=True` is set.\n\n\n```python\nIn [1]: import imagej_rolling_ball\n   ...: import numpy\n   ...: \n   ...: bg_subtracter = imagej_rolling_ball.BackgroundSubtracter(java_options='-Xmx4g')\n   ...: img = numpy.eye(10_000, dtype='uint8') + 1\nImageJ Version: 2.14.0/1.54f\n\nIn [2]: bg_subtracter.rolling_ball_background_chunked(img, 50, 1024*5)\nOperating in headless mode - the original ImageJ will have limited functionality.\nOut[2]: dask.array<_trim, shape=(10000, 10000), dtype=uint8, chunksize=(5120, 5120), chunktype=numpy.ndarray>\n\nIn [3]: bg_subtracter.rolling_ball_background_chunked(img, 50, 1024*5).compute()\nOut[3]: \narray([[1, 0, 0, ..., 0, 0, 0],\n       [0, 1, 0, ..., 0, 0, 0],\n       [0, 0, 1, ..., 0, 0, 0],\n       ...,\n       [0, 0, 0, ..., 1, 0, 0],\n       [0, 0, 0, ..., 0, 1, 0],\n       [0, 0, 0, ..., 0, 0, 1]], dtype=uint8)\n\nIn [4]: bg_subtracter.rolling_ball_background_chunked(img, 50, 1024*5, compute=True)\nOut[4]: <zarr.core.Array (10000, 10000) uint8>\n```\n\n### Process chunked ome-tiff in command line interface\n\nUse `rolling-ball` command to process multi-channel tiff file and write the\nprocessed image to disk as a pyramidal ome-tiff. `python -m pip install\nimagej-rolling-ball[wsi]` is required.\n\n```bash\nNAME\n    rolling-ball\n\nSYNOPSIS\n    rolling-ball IMG_PATH RADIUS <flags>\n\nPOSITIONAL ARGUMENTS\n    IMG_PATH\n    RADIUS\n\nFLAGS\n    --out_path=OUT_PATH\n        Type: Optional[str]\n        Default: None\n    -t, --target_chunk_size=TARGET_CHUNK_SIZE\n        Type: int\n        Default: 5120\n    --overwrite=OVERWRITE\n        Type: bool\n        Default: False\n    -j, --java_options=JAVA_OPTIONS\n        Type: Optional[str]\n        Default: None\n    -i, --imagej_version=IMAGEJ_VERSION\n        Type: Optional[str]\n        Default: None\n    -p, --pyramid_config=PYRAMID_CONFIG\n        Type: Optional[dict]\n        Default: None\n    --rolling_ball_kwargs=ROLLING_BALL_KWARGS\n        Type: Optional[dict]\n        Default: None\n    -n, --num_workers=NUM_WORKERS\n        Type: int\n        Default: 4\n```\n\n**NOTES:**\n\n- To pass in JVM options, e.g. set max heap size (`-Xmx4g`), use the syntax of\n   `-j=\"-Xmx4g\"`\n- The defaut Java heap size is 70% of the available memory\n- Increase `--num_workers` may speed up processing time, default is `4`\n- The default output file will be generated next to the input file, the file\n  name ends with `-ij_rolling_ball_{radius}.ome.tif`\n\n**Example commands:**\n\n- Minimal command, process file using rolling ball radius of `100` and\n  writebackground-subtracted image to disk\n\n    ```bash\n    rolling-ball path/to/input/file.ome.tif 100\n    ```\n\n- Write background image instead of subtracted image (`--rolling_ball_kwargs\n  \"{'create_background': True}\"`) to file; set JVM max heap size to 4 GB\n  (`-j=\"-Xmx4g\"`) and use 8 threads (`-n=8`)\n\n    ```bash\n    rolling-ball path/to/input/file.ome.tif 100 \\\n        --out_path path/to/input/file-background_100.ome.tif \\\n        --rolling_ball_kwargs \"{'create_background': True}\" \\\n        -j=\"-Xmx4g\" \\ \n        --overwrite \\\n        -n=8\n    ```\n\n### Docker usage\n\nThe docker image can be build from the github repo or be pulled from the docker\nhub.\n\nTo process an image file (`input.ome.tif`) with rolling ball radius `50` in the\ncurrent directory:\n\n```bash\n docker run -it --rm -v \"$(pwd)\":/data \\\n    yuanchen12/imagej-rolling-ball \\\n    rolling-ball /data/input.ome.tif 50\n```\n\nWhen the process is completed, output file `input-ij_rolling_ball_50.ome.tif`\nwill be generated.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Python wrapper for ImageJ's rolling ball background subtraction using pyimagej",
    "version": "2024.6.1",
    "project_urls": {
        "Homepage": "https://pypi.org/project/imagej-rolling-ball",
        "Repository": "https://github.com/Yu-AnChen/imagej-rolling-ball"
    },
    "split_keywords": [
        "microscopy",
        " imagej",
        " background subtraction",
        " image processing"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "068e2af5f8dcedbae4d1dd0c3a22c876ca89e2b58636d0cc8d47bfea40f70ef9",
                "md5": "3836387eb57f118109b35a8056b3348d",
                "sha256": "13fad3a1faa0df751e4cf378b5826556b647700e3ee8df25312d1f91fc0fbd2b"
            },
            "downloads": -1,
            "filename": "imagej_rolling_ball-2024.6.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3836387eb57f118109b35a8056b3348d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.8",
            "size": 8925,
            "upload_time": "2024-07-10T04:37:31",
            "upload_time_iso_8601": "2024-07-10T04:37:31.053262Z",
            "url": "https://files.pythonhosted.org/packages/06/8e/2af5f8dcedbae4d1dd0c3a22c876ca89e2b58636d0cc8d47bfea40f70ef9/imagej_rolling_ball-2024.6.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "434ede939f15749e0939f65f71fad6b5bf6ead1c4e92e0582fda3ed339e185ff",
                "md5": "9f14d920b15cc8e6f5ab8f17aaf5c930",
                "sha256": "f27a76dc19f009d46a6bc1b5bc3f26320448b76b9121ca84594f63ec932e9754"
            },
            "downloads": -1,
            "filename": "imagej_rolling_ball-2024.6.1.tar.gz",
            "has_sig": false,
            "md5_digest": "9f14d920b15cc8e6f5ab8f17aaf5c930",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.8",
            "size": 7252,
            "upload_time": "2024-07-10T04:37:32",
            "upload_time_iso_8601": "2024-07-10T04:37:32.958957Z",
            "url": "https://files.pythonhosted.org/packages/43/4e/de939f15749e0939f65f71fad6b5bf6ead1c4e92e0582fda3ed339e185ff/imagej_rolling_ball-2024.6.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-10 04:37:32",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Yu-AnChen",
    "github_project": "imagej-rolling-ball",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "imagej-rolling-ball"
}
        
Elapsed time: 0.33923s