imagetokenizer


Nameimagetokenizer JSON
Version 0.0.2 PyPI version JSON
download
home_pagehttps://github.com/lucasjinreal/ImageTokenizer
SummaryImage Tokenizer encode visuals.
upload_time2024-06-20 04:14:46
maintainerNone
docs_urlNone
authorLucas Jin
requires_pythonNone
licenseGPL-3.0
keywords deep learning script helper tools
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ImageTokenizer: Unified Image and Video Tokenization

Welcome to the **ImageTokenizer** repository! 🎉 This Python package is designed to simplify the process of image and video tokenization, a crucial step for various applications such as image/video generation and understanding. We provide a variety of popular tokenizers with a simple and unified interface, making your coding experience seamless and efficient. 🛠️

## Features

- **Unified Interface**: A consistent API for all supported tokenizers.
- **Extensive Support**: Covers a range of popular image and video tokenizers.
- **Easy Integration**: Quick setup and integration with your projects.

## Supported Tokenizers

Here's a list of the current supported image tokenizers:

- **OmniTokenizer**: Versatile tokenizer capable of handling both images and videos.
- **OpenMagvit2**: An open-source version of Magvit2, renowned for its excellent results.

## Getting Started

To get started with ImageTokenizer, follow these simple steps:

### Installation

You can install ImageTokenizer using pip:

```bash
pip install imagetokenizer
```

### Usage

Here's a quick example of how to use OmniTokenizer:

```python
from imagetokenizer import Magvit2Tokenizer

# Initialize the tokenizer
image_tokenizer = Magvit2Tokenizer()

# Tokenize an image
quants, embedding, codebook_indices = image_tokenizer.encode("path_to_your_image.jpg")

# Print the tokens
print(image_tokens)

image = image_tokenizer.decode(quants)
```

### Documentation

For more detailed information and examples, please refer to our [official documentation](#).

## Contributing

We welcome contributions! If you have an idea for a new tokenizer or want to improve existing ones, feel free to submit a pull request or create an issue. 🔧

## License

ImageTokenizer is open-source and available under the [MIT License](LICENSE).

## Community

- Join our [Slack Channel](#) to discuss and collaborate.
- Follow us on [Twitter](#) for updates and news.

## Acknowledgements

We would like to thank all the contributors and the community for their support and feedback. 🙏

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/lucasjinreal/ImageTokenizer",
    "name": "imagetokenizer",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "deep learning, script helper, tools",
    "author": "Lucas Jin",
    "author_email": "jinfagang19@163.com",
    "download_url": "https://files.pythonhosted.org/packages/84/91/8b1dc0690a16ea605129f4050ce12be7c4de2f62e1347399b52bfb1872e2/imagetokenizer-0.0.2.tar.gz",
    "platform": "any",
    "description": "# ImageTokenizer: Unified Image and Video Tokenization\n\nWelcome to the **ImageTokenizer** repository! \ud83c\udf89 This Python package is designed to simplify the process of image and video tokenization, a crucial step for various applications such as image/video generation and understanding. We provide a variety of popular tokenizers with a simple and unified interface, making your coding experience seamless and efficient. \ud83d\udee0\ufe0f\n\n## Features\n\n- **Unified Interface**: A consistent API for all supported tokenizers.\n- **Extensive Support**: Covers a range of popular image and video tokenizers.\n- **Easy Integration**: Quick setup and integration with your projects.\n\n## Supported Tokenizers\n\nHere's a list of the current supported image tokenizers:\n\n- **OmniTokenizer**: Versatile tokenizer capable of handling both images and videos.\n- **OpenMagvit2**: An open-source version of Magvit2, renowned for its excellent results.\n\n## Getting Started\n\nTo get started with ImageTokenizer, follow these simple steps:\n\n### Installation\n\nYou can install ImageTokenizer using pip:\n\n```bash\npip install imagetokenizer\n```\n\n### Usage\n\nHere's a quick example of how to use OmniTokenizer:\n\n```python\nfrom imagetokenizer import Magvit2Tokenizer\n\n# Initialize the tokenizer\nimage_tokenizer = Magvit2Tokenizer()\n\n# Tokenize an image\nquants, embedding, codebook_indices = image_tokenizer.encode(\"path_to_your_image.jpg\")\n\n# Print the tokens\nprint(image_tokens)\n\nimage = image_tokenizer.decode(quants)\n```\n\n### Documentation\n\nFor more detailed information and examples, please refer to our [official documentation](#).\n\n## Contributing\n\nWe welcome contributions! If you have an idea for a new tokenizer or want to improve existing ones, feel free to submit a pull request or create an issue. \ud83d\udd27\n\n## License\n\nImageTokenizer is open-source and available under the [MIT License](LICENSE).\n\n## Community\n\n- Join our [Slack Channel](#) to discuss and collaborate.\n- Follow us on [Twitter](#) for updates and news.\n\n## Acknowledgements\n\nWe would like to thank all the contributors and the community for their support and feedback. \ud83d\ude4f\n",
    "bugtrack_url": null,
    "license": "GPL-3.0",
    "summary": "Image Tokenizer encode visuals.",
    "version": "0.0.2",
    "project_urls": {
        "Homepage": "https://github.com/lucasjinreal/ImageTokenizer"
    },
    "split_keywords": [
        "deep learning",
        " script helper",
        " tools"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "84918b1dc0690a16ea605129f4050ce12be7c4de2f62e1347399b52bfb1872e2",
                "md5": "9b342b9f62b701ce067711c6b8c3a074",
                "sha256": "3df37c69411f4626c90bf22ddc5170c15c7e1c49af64eb7259e4e7fcdd1ef461"
            },
            "downloads": -1,
            "filename": "imagetokenizer-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "9b342b9f62b701ce067711c6b8c3a074",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 23615,
            "upload_time": "2024-06-20T04:14:46",
            "upload_time_iso_8601": "2024-06-20T04:14:46.663913Z",
            "url": "https://files.pythonhosted.org/packages/84/91/8b1dc0690a16ea605129f4050ce12be7c4de2f62e1347399b52bfb1872e2/imagetokenizer-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-20 04:14:46",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "lucasjinreal",
    "github_project": "ImageTokenizer",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "imagetokenizer"
}
        
Elapsed time: 0.30770s