imandra


Nameimandra JSON
Version 2.0.0 PyPI version JSON
download
home_pageNone
SummaryA CLI and API client library for interfacing with Imandra's web APIs
upload_time2025-02-06 13:31:14
maintainerNone
docs_urlNone
authorNone
requires_pythonNone
licenseNone
keywords imandra
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Imandra CLI and API client library

[Imandra](https://www.imandra.ai) is a cloud-native automated reasoning engine for analysis of algorithms and data.

This package contains the `imandra` Python library for interacting with Imandra's web APIs. It includes:

- `imandra.core`, which provides programmatic access to Imandra X, Imandra's core reasoning engine.
- `imandra.u.agents.*` and `imandra.u.reasoners.*`, bindings to Imandra Universe Agents and Reasoners.
- `imandra.ipl`, tools for analysing Imandra Protocol Language (IPL) files.

If you're interested in developing Imandra X or IPL models, you may also want to see the [Imandra documentation](https://docs.imandra.ai/).

The `imandra` python API reference documentation is available [here](https://docs.imandra.ai/imandra-docs/python/imandra/).

## Authentication

First obtain an API key from https://universe.imandra.ai.

The Python library will read the API key from the first of:

1. The `api_key` parameter passed when instantiating a `Client`.
2. The `IMANDRA_API_KEY` environment variable.
3. The file `$HOME/.config/imandra/api_key` (MacOS and Linux) or `%USERPROFILE%\AppData\Local\imandra\api_key` (Windows)


## Example: Imandra Core

First, ensure dependencies for the `core` module are installed. Note that `imandra.core` requires Python >= 3.12.

```
$ pip install 'imandra[core]'
```

```
$ ipython
...
In [1]: from imandra.core import Client

In [2]: client = Client()

In [3]: client.eval_src('let f x = if x > 0 then if x * x < 0 then x else x + 1 else x')
Out[3]: success: true

In [4]: result = client.verify_src('fun x -> x > 0 ==> f x > 0')

In [5]: result
Out[5]:
proved {
  proof_pp: "..."
}

In [6]: print(result.proved.proof_pp)
{ id = 1; concl = `|- x > 0 ==> f x > 0`;
  view =
  T_deduction {
    premises =
    [("p",
      [{ id = 0; concl = `|- x > 0 ==> f x > 0`;
         view = T_deduction {premises = []} }
        ])
      ]}
  }

In [7]: result = client.instance_src('fun x -> f x = 43')

In [8]: result
Out[8]:
sat {
  model {
    m_type: Instance
    src: "module M = struct\n\n  let x = 42\n\n end\n"
    artifact {
      kind: "cir.model"
      data: "..."
      api_version: "v8"
    }
  }
}

In [9]: print(result.sat.model.src)
module M = struct

  let x = 42

 end

In [10]: result = client.decompose('f')

In [11]: result
Out[11]:
artifact {
  kind: "cir.fun_decomp"
  data: "..."
  api_version: "v8"
}
regions_str {
  constraints_str: "not (x > 0)"
  invariant_str: "x"
  model_str {
    k: "x"
    v: "0"
  }
}
regions_str {
  constraints_str: "not (x * x < 0)"
  constraints_str: "x > 0"
  invariant_str: "x + 1"
  model_str {
    k: "x"
    v: "1"
  }
}
task {
  id {
    id: "task:decomp:rE3VSX-t5kbrrAksQ4saBrMUs2uHTXfu-CqeZunV9aE="
  }
  kind: TASK_DECOMP
}
```

## Example: Imandra Universe reasoners

```
$ pip install imandra
```

```
$ ipython

In [1]: from imandra.u.reasoners.prover9 import Client

In [2]: client = Client()

In [3]: input = "formulas(sos).\n\n  e * x = x.\n  x'\'' * x = e.\n  (x * y) * z = x * (y * z).\n\n  x * x = e.\n\nend_of_list.\n\nformulas(goals).\n\n  x * y = y * x.\n\nend_of_list ...: ."

In [4]: result = client.eval(input)

In [5]: print(result['results'][0])
============================== Prover9 ===============================
Prover9 (64) version 2009-11A, November 2009.
Process 18 was started by universe on localhost,
Mon Jan  6 14:52:26 2025
The command was "/imandra-universe/prover9/bin/prover9 -t 45".
============================== end of head ===========================

============================== INPUT =================================

formulas(sos).
e * x = x.
x''' * x = e.
(x * y) * z = x * (y * z).
x * x = e.
end_of_list.

formulas(goals).
x * y = y * x.
end_of_list.

============================== end of input ==========================

...

============================== PROOF =================================

% Proof 1 at 0.01 (+ 0.00) seconds.
% Length of proof is 16.
% Level of proof is 7.
% Maximum clause weight is 11.000.
% Given clauses 12.

1 x * y = y * x # label(non_clause) # label(goal).  [goal].
2 e * x = x.  [assumption].
3 x''' * x = e.  [assumption].
4 (x * y) * z = x * (y * z).  [assumption].
5 x * x = e.  [assumption].
6 c2 * c1 != c1 * c2.  [deny(1)].
7 x''' * (x * y) = y.  [para(3(a,1),4(a,1,1)),rewrite([2(2)]),flip(a)].
8 x * (x * y) = y.  [para(5(a,1),4(a,1,1)),rewrite([2(2)]),flip(a)].
9 x * (y * (x * y)) = e.  [para(5(a,1),4(a,1)),flip(a)].
11 x'''''' * e = x.  [para(3(a,1),7(a,1,2))].
13 x''' * e = x.  [para(5(a,1),7(a,1,2))].
15 x''' = x.  [back_rewrite(11),rewrite([13(8)])].
16 x * e = x.  [back_rewrite(13),rewrite([15(3)])].
19 x * (y * x) = y.  [para(9(a,1),8(a,1,2)),rewrite([16(2)]),flip(a)].
24 x * y = y * x.  [para(19(a,1),8(a,1,2))].
25 $F.  [resolve(24,a,6,a)].

============================== end of proof ==========================

============================== STATISTICS ============================

Given=12. Generated=122. Kept=23. proofs=1.
Usable=8. Sos=3. Demods=12. Limbo=2, Disabled=14. Hints=0.
Kept_by_rule=0, Deleted_by_rule=0.
Forward_subsumed=99. Back_subsumed=0.
Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0.
New_demodulators=21 (0 lex), Back_demodulated=9. Back_unit_deleted=0.
Demod_attempts=770. Demod_rewrites=156.
Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0.
Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0.
Megabytes=0.06.
User_CPU=0.01, System_CPU=0.00, Wall_clock=0.

============================== end of statistics =====================

============================== end of search =========================

THEOREM PROVED
```

## Example: Imandra Universe agents

```
$ pip install imandra[universe]
```

```
$ ipython

In [1]: from imandra.u.agents import cogito

In [2]: from langchain_core.messages import HumanMessage

In [3]: g = cogito.get_remote_graph()

In [4]: cogito.create_thread_sync(g)

In [5]: g.invoke({'messages': [HumanMessage(content='hello')], 'tasks': []})
Out[5]:
{'messages': [{'content': "You are Cogito, agent within Imandra Universe - a cloud platform for accessing automated logical reasoners, tools and agents connected to them.",
   'additional_kwargs': {},
   'response_metadata': {},
   'type': 'system',
   'name': None,
   'id': 'ae883182-17df-4ced-87e2-4b79b7777e93'},
  {'content': 'hello',
   'additional_kwargs': {'example': False,
    'additional_kwargs': {},
    'response_metadata': {}},
   'response_metadata': {},
   'type': 'human',
   'name': None,
   'id': 'c5491021-fec5-4e4a-8651-eda927d8e473',
   'example': False},
  {'content': 'Hello! How can I assist you today?',
   'additional_kwargs': {},
   'response_metadata': {},
   'type': 'ai',
   'name': 'supervisor',
   'id': '52e4fd16-235a-4ac2-bdba-3a20d19870a3',
   'example': False,
   'tool_calls': [],
   'invalid_tool_calls': [],
   'usage_metadata': None}],
 'tasks': []}
```

## Example: IPL

```
$ pip install imandra
```

```
$ ipython

In [1]: from imandra.ipl import Client

In [2]: client = Client()

In [3]: job_id = client.unsat_analysis('/path/to/model.ipl', None, None)

In [4]: client.status(job_id)
Out[4]: 'processing'

In [5]: client.wait(job_id)
Out[5]: 'done'

In [6]: data = client.data(job_id)

In [7]: print(data['content'].decode('ascii'))
For message flow `simple_orders_one`, unsat cores: []
```

## CLI

The `imandra` package also adds an entry point called `imandra-cli` which exposes the `imandra` library functionality in a more discoverable way:

```sh
$ python3 -m venv ./my/venv
...
$ ./my/venv/pip install imandra
...
$ ./my/venv/bin/imandra-cli --help
usage: imandra [-h] auth,ipl,core,rule-synth,cfb ...

Imandra CLI

positional arguments:
  {auth,ipl,core,rule-synth,cfb}

optional arguments:
  -h, --help            show this help message and exit
```

On Windows, the entry point can be found as `.\my\venv\Scripts\imandra-cli.exe`.

### CLI Authentication

This is the first step to start using the Imandra CLI. Our cloud environment requires a user account, which you can setup like this:

```sh
$ ./my/venv/bin/imandra-cli auth login
```

and follow the prompts to authenticate. This will create the relevant credentials in `~/.imandra` (or `%APPDATA%\imandra` on Windows).

You should now be able to invoke CLI commands that require authentication.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "imandra",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "imandra",
    "author": null,
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/4e/af/8a479f70c50356b3ead6f7edebab2e23f7a720f6aff22bcfe575393c223c/imandra-2.0.0.tar.gz",
    "platform": null,
    "description": "# Imandra CLI and API client library\n\n[Imandra](https://www.imandra.ai) is a cloud-native automated reasoning engine for analysis of algorithms and data.\n\nThis package contains the `imandra` Python library for interacting with Imandra's web APIs. It includes:\n\n- `imandra.core`, which provides programmatic access to Imandra X, Imandra's core reasoning engine.\n- `imandra.u.agents.*` and `imandra.u.reasoners.*`, bindings to Imandra Universe Agents and Reasoners.\n- `imandra.ipl`, tools for analysing Imandra Protocol Language (IPL) files.\n\nIf you're interested in developing Imandra X or IPL models, you may also want to see the [Imandra documentation](https://docs.imandra.ai/).\n\nThe `imandra` python API reference documentation is available [here](https://docs.imandra.ai/imandra-docs/python/imandra/).\n\n## Authentication\n\nFirst obtain an API key from https://universe.imandra.ai.\n\nThe Python library will read the API key from the first of:\n\n1. The `api_key` parameter passed when instantiating a `Client`.\n2. The `IMANDRA_API_KEY` environment variable.\n3. The file `$HOME/.config/imandra/api_key` (MacOS and Linux) or `%USERPROFILE%\\AppData\\Local\\imandra\\api_key` (Windows)\n\n\n## Example: Imandra Core\n\nFirst, ensure dependencies for the `core` module are installed. Note that `imandra.core` requires Python >= 3.12.\n\n```\n$ pip install 'imandra[core]'\n```\n\n```\n$ ipython\n...\nIn [1]: from imandra.core import Client\n\nIn [2]: client = Client()\n\nIn [3]: client.eval_src('let f x = if x > 0 then if x * x < 0 then x else x + 1 else x')\nOut[3]: success: true\n\nIn [4]: result = client.verify_src('fun x -> x > 0 ==> f x > 0')\n\nIn [5]: result\nOut[5]:\nproved {\n  proof_pp: \"...\"\n}\n\nIn [6]: print(result.proved.proof_pp)\n{ id = 1; concl = `|- x > 0 ==> f x > 0`;\n  view =\n  T_deduction {\n    premises =\n    [(\"p\",\n      [{ id = 0; concl = `|- x > 0 ==> f x > 0`;\n         view = T_deduction {premises = []} }\n        ])\n      ]}\n  }\n\nIn [7]: result = client.instance_src('fun x -> f x = 43')\n\nIn [8]: result\nOut[8]:\nsat {\n  model {\n    m_type: Instance\n    src: \"module M = struct\\n\\n  let x = 42\\n\\n end\\n\"\n    artifact {\n      kind: \"cir.model\"\n      data: \"...\"\n      api_version: \"v8\"\n    }\n  }\n}\n\nIn [9]: print(result.sat.model.src)\nmodule M = struct\n\n  let x = 42\n\n end\n\nIn [10]: result = client.decompose('f')\n\nIn [11]: result\nOut[11]:\nartifact {\n  kind: \"cir.fun_decomp\"\n  data: \"...\"\n  api_version: \"v8\"\n}\nregions_str {\n  constraints_str: \"not (x > 0)\"\n  invariant_str: \"x\"\n  model_str {\n    k: \"x\"\n    v: \"0\"\n  }\n}\nregions_str {\n  constraints_str: \"not (x * x < 0)\"\n  constraints_str: \"x > 0\"\n  invariant_str: \"x + 1\"\n  model_str {\n    k: \"x\"\n    v: \"1\"\n  }\n}\ntask {\n  id {\n    id: \"task:decomp:rE3VSX-t5kbrrAksQ4saBrMUs2uHTXfu-CqeZunV9aE=\"\n  }\n  kind: TASK_DECOMP\n}\n```\n\n## Example: Imandra Universe reasoners\n\n```\n$ pip install imandra\n```\n\n```\n$ ipython\n\nIn [1]: from imandra.u.reasoners.prover9 import Client\n\nIn [2]: client = Client()\n\nIn [3]: input = \"formulas(sos).\\n\\n  e * x = x.\\n  x'\\'' * x = e.\\n  (x * y) * z = x * (y * z).\\n\\n  x * x = e.\\n\\nend_of_list.\\n\\nformulas(goals).\\n\\n  x * y = y * x.\\n\\nend_of_list ...: .\"\n\nIn [4]: result = client.eval(input)\n\nIn [5]: print(result['results'][0])\n============================== Prover9 ===============================\nProver9 (64) version 2009-11A, November 2009.\nProcess 18 was started by universe on localhost,\nMon Jan  6 14:52:26 2025\nThe command was \"/imandra-universe/prover9/bin/prover9 -t 45\".\n============================== end of head ===========================\n\n============================== INPUT =================================\n\nformulas(sos).\ne * x = x.\nx''' * x = e.\n(x * y) * z = x * (y * z).\nx * x = e.\nend_of_list.\n\nformulas(goals).\nx * y = y * x.\nend_of_list.\n\n============================== end of input ==========================\n\n...\n\n============================== PROOF =================================\n\n% Proof 1 at 0.01 (+ 0.00) seconds.\n% Length of proof is 16.\n% Level of proof is 7.\n% Maximum clause weight is 11.000.\n% Given clauses 12.\n\n1 x * y = y * x # label(non_clause) # label(goal).  [goal].\n2 e * x = x.  [assumption].\n3 x''' * x = e.  [assumption].\n4 (x * y) * z = x * (y * z).  [assumption].\n5 x * x = e.  [assumption].\n6 c2 * c1 != c1 * c2.  [deny(1)].\n7 x''' * (x * y) = y.  [para(3(a,1),4(a,1,1)),rewrite([2(2)]),flip(a)].\n8 x * (x * y) = y.  [para(5(a,1),4(a,1,1)),rewrite([2(2)]),flip(a)].\n9 x * (y * (x * y)) = e.  [para(5(a,1),4(a,1)),flip(a)].\n11 x'''''' * e = x.  [para(3(a,1),7(a,1,2))].\n13 x''' * e = x.  [para(5(a,1),7(a,1,2))].\n15 x''' = x.  [back_rewrite(11),rewrite([13(8)])].\n16 x * e = x.  [back_rewrite(13),rewrite([15(3)])].\n19 x * (y * x) = y.  [para(9(a,1),8(a,1,2)),rewrite([16(2)]),flip(a)].\n24 x * y = y * x.  [para(19(a,1),8(a,1,2))].\n25 $F.  [resolve(24,a,6,a)].\n\n============================== end of proof ==========================\n\n============================== STATISTICS ============================\n\nGiven=12. Generated=122. Kept=23. proofs=1.\nUsable=8. Sos=3. Demods=12. Limbo=2, Disabled=14. Hints=0.\nKept_by_rule=0, Deleted_by_rule=0.\nForward_subsumed=99. Back_subsumed=0.\nSos_limit_deleted=0. Sos_displaced=0. Sos_removed=0.\nNew_demodulators=21 (0 lex), Back_demodulated=9. Back_unit_deleted=0.\nDemod_attempts=770. Demod_rewrites=156.\nRes_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0.\nNonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0.\nMegabytes=0.06.\nUser_CPU=0.01, System_CPU=0.00, Wall_clock=0.\n\n============================== end of statistics =====================\n\n============================== end of search =========================\n\nTHEOREM PROVED\n```\n\n## Example: Imandra Universe agents\n\n```\n$ pip install imandra[universe]\n```\n\n```\n$ ipython\n\nIn [1]: from imandra.u.agents import cogito\n\nIn [2]: from langchain_core.messages import HumanMessage\n\nIn [3]: g = cogito.get_remote_graph()\n\nIn [4]: cogito.create_thread_sync(g)\n\nIn [5]: g.invoke({'messages': [HumanMessage(content='hello')], 'tasks': []})\nOut[5]:\n{'messages': [{'content': \"You are Cogito, agent within Imandra Universe - a cloud platform for accessing automated logical reasoners, tools and agents connected to them.\",\n   'additional_kwargs': {},\n   'response_metadata': {},\n   'type': 'system',\n   'name': None,\n   'id': 'ae883182-17df-4ced-87e2-4b79b7777e93'},\n  {'content': 'hello',\n   'additional_kwargs': {'example': False,\n    'additional_kwargs': {},\n    'response_metadata': {}},\n   'response_metadata': {},\n   'type': 'human',\n   'name': None,\n   'id': 'c5491021-fec5-4e4a-8651-eda927d8e473',\n   'example': False},\n  {'content': 'Hello! How can I assist you today?',\n   'additional_kwargs': {},\n   'response_metadata': {},\n   'type': 'ai',\n   'name': 'supervisor',\n   'id': '52e4fd16-235a-4ac2-bdba-3a20d19870a3',\n   'example': False,\n   'tool_calls': [],\n   'invalid_tool_calls': [],\n   'usage_metadata': None}],\n 'tasks': []}\n```\n\n## Example: IPL\n\n```\n$ pip install imandra\n```\n\n```\n$ ipython\n\nIn [1]: from imandra.ipl import Client\n\nIn [2]: client = Client()\n\nIn [3]: job_id = client.unsat_analysis('/path/to/model.ipl', None, None)\n\nIn [4]: client.status(job_id)\nOut[4]: 'processing'\n\nIn [5]: client.wait(job_id)\nOut[5]: 'done'\n\nIn [6]: data = client.data(job_id)\n\nIn [7]: print(data['content'].decode('ascii'))\nFor message flow `simple_orders_one`, unsat cores: []\n```\n\n## CLI\n\nThe `imandra` package also adds an entry point called `imandra-cli` which exposes the `imandra` library functionality in a more discoverable way:\n\n```sh\n$ python3 -m venv ./my/venv\n...\n$ ./my/venv/pip install imandra\n...\n$ ./my/venv/bin/imandra-cli --help\nusage: imandra [-h] auth,ipl,core,rule-synth,cfb ...\n\nImandra CLI\n\npositional arguments:\n  {auth,ipl,core,rule-synth,cfb}\n\noptional arguments:\n  -h, --help            show this help message and exit\n```\n\nOn Windows, the entry point can be found as `.\\my\\venv\\Scripts\\imandra-cli.exe`.\n\n### CLI Authentication\n\nThis is the first step to start using the Imandra CLI. Our cloud environment requires a user account, which you can setup like this:\n\n```sh\n$ ./my/venv/bin/imandra-cli auth login\n```\n\nand follow the prompts to authenticate. This will create the relevant credentials in `~/.imandra` (or `%APPDATA%\\imandra` on Windows).\n\nYou should now be able to invoke CLI commands that require authentication.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A CLI and API client library for interfacing with Imandra's web APIs",
    "version": "2.0.0",
    "project_urls": null,
    "split_keywords": [
        "imandra"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "54114ce28624e784079e1604f1ab6d63f7e1f690889e231587b77fc5ab648aea",
                "md5": "cf5f4bd555030685566e3f2ecad8ac36",
                "sha256": "b5b0432a0db797cbad14cdf45a21ca8946309ecff87c4fa4edd49bd9cec3e009"
            },
            "downloads": -1,
            "filename": "imandra-2.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "cf5f4bd555030685566e3f2ecad8ac36",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 119312,
            "upload_time": "2025-02-06T13:31:12",
            "upload_time_iso_8601": "2025-02-06T13:31:12.824839Z",
            "url": "https://files.pythonhosted.org/packages/54/11/4ce28624e784079e1604f1ab6d63f7e1f690889e231587b77fc5ab648aea/imandra-2.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "4eaf8a479f70c50356b3ead6f7edebab2e23f7a720f6aff22bcfe575393c223c",
                "md5": "30972cd1af48c949bf35ee093f982765",
                "sha256": "ff07553a510ea0dc46cb614b775ab9eece65a49b3bc0778a80289a5212977963"
            },
            "downloads": -1,
            "filename": "imandra-2.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "30972cd1af48c949bf35ee093f982765",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 57549,
            "upload_time": "2025-02-06T13:31:14",
            "upload_time_iso_8601": "2025-02-06T13:31:14.917891Z",
            "url": "https://files.pythonhosted.org/packages/4e/af/8a479f70c50356b3ead6f7edebab2e23f7a720f6aff22bcfe575393c223c/imandra-2.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-06 13:31:14",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "imandra"
}
        
Elapsed time: 1.49028s