imbalanced-learn-extra


Nameimbalanced-learn-extra JSON
Version 0.2.5 PyPI version JSON
download
home_pageNone
SummaryAn implementation of novel oversampling algorithms.
upload_time2024-11-07 08:00:44
maintainerNone
docs_urlNone
authorNone
requires_python<3.13,>=3.10
licenseMIT
keywords machine learning imbalanced learning oversampling
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [scikit-learn]: <http://scikit-learn.org/stable/>
[imbalanced-learn]: <http://imbalanced-learn.org/stable/>
[SOMO]: <https://www.sciencedirect.com/science/article/abs/pii/S0957417417302324>
[KMeans-SMOTE]: <https://www.sciencedirect.com/science/article/abs/pii/S0020025518304997>
[G-SOMO]: <https://www.sciencedirect.com/science/article/abs/pii/S095741742100662X>
[black badge]: <https://img.shields.io/badge/%20style-black-000000.svg>
[black]: <https://github.com/psf/black>
[docformatter badge]: <https://img.shields.io/badge/%20formatter-docformatter-fedcba.svg>
[docformatter]: <https://github.com/PyCQA/docformatter>
[ruff badge]: <https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/charliermarsh/ruff/main/assets/badge/v1.json>
[ruff]: <https://github.com/charliermarsh/ruff>
[mypy badge]: <http://www.mypy-lang.org/static/mypy_badge.svg>
[mypy]: <http://mypy-lang.org>
[mkdocs badge]: <https://img.shields.io/badge/docs-mkdocs%20material-blue.svg?style=flat>
[mkdocs]: <https://squidfunk.github.io/mkdocs-material>
[version badge]: <https://img.shields.io/pypi/v/imbalanced-learn-extra.svg>
[pythonversion badge]: <https://img.shields.io/pypi/pyversions/imbalanced-learn-extra.svg>
[downloads badge]: <https://img.shields.io/pypi/dd/imbalanced-learn-extra>
[gitter]: <https://gitter.im/imbalanced-learn-extra/community>
[gitter badge]: <https://badges.gitter.im/join%20chat.svg>
[discussions]: <https://github.com/georgedouzas/imbalanced-learn-extra/discussions>
[discussions badge]: <https://img.shields.io/github/discussions/georgedouzas/imbalanced-learn-extra>
[ci]: <https://github.com/georgedouzas/imbalanced-learn-extra/actions?query=workflow>
[ci badge]: <https://github.com/georgedouzas/imbalanced-learn-extra/actions/workflows/ci.yml/badge.svg?branch=main>
[doc]: <https://github.com/georgedouzas/imbalanced-learn-extra/actions?query=workflow>
[doc badge]: <https://github.com/georgedouzas/imbalanced-learn-extra/actions/workflows/doc.yml/badge.svg?branch=main>

# imbalanced-learn-extra

[![ci][ci badge]][ci] [![doc][doc badge]][doc]

| Category          | Tools    |
| ------------------| -------- |
| **Development**   | [![black][black badge]][black] [![ruff][ruff badge]][ruff] [![mypy][mypy badge]][mypy] [![docformatter][docformatter badge]][docformatter] |
| **Package**       | ![version][version badge] ![pythonversion][pythonversion badge] ![downloads][downloads badge] |
| **Documentation** | [![mkdocs][mkdocs badge]][mkdocs]|
| **Communication** | [![gitter][gitter badge]][gitter] [![discussions][discussions badge]][discussions] |

## Introduction

`imbalanced-learn-extra` is a Python package that extends [imbalanced-learn]. It implements algorithms that are not included in
[imbalanced-learn] due to their novelty or lower citation number. The current version includes the following:

- A general interface for clustering-based oversampling algorithms.

- The Geometric SMOTE algorithm. It is a geometrically enhanced drop-in replacement for SMOTE, that handles numerical as well as
categorical features.

## Installation

For user installation, `imbalanced-learn-extra` is currently available on the PyPi's repository, and you can
install it via `pip`:

```bash
pip install imbalanced-learn-extra
```

Development installation requires cloning the repository and then using [PDM](https://github.com/pdm-project/pdm) to install the
project as well as the main and development dependencies:

```bash
git clone https://github.com/georgedouzas/imbalanced-learn-extra.git
cd imbalanced-learn-extra
pdm install
```

SOM clusterer requires optional dependencies:

```bash
pip install imbalanced-learn-extra[som]
```

## Usage

All the classes included in `imbalanced-learn-extra` follow the [imbalanced-learn] API using the functionality of the base
oversampler. Using [scikit-learn] convention, the data are represented as follows:

- Input data `X`: 2D array-like or sparse matrices.
- Targets `y`: 1D array-like.

The oversamplers implement a `fit` method to learn from `X` and `y`:

```python
oversampler.fit(X, y)
```

They also implement a `fit_resample` method to resample `X` and `y`:

```python
X_resampled, y_resampled = clustering_based_oversampler.fit_resample(X, y)
```

## Citing `imbalanced-learn-extra`

Publications using clustering-based oversampling:

- [G. Douzas, F. Bacao, "Self-Organizing Map Oversampling (SOMO) for imbalanced data set learning", Expert Systems with
    Applications, vol. 82, pp. 40-52, 2017.][SOMO]
- [G. Douzas, F. Bacao, F. Last, "Improving imbalanced learning through a heuristic oversampling method based on k-means and
    SMOTE", Information Sciences, vol. 465, pp. 1-20, 2018.][KMeans-SMOTE]
- [G. Douzas, F. Bacao, F. Last, "G-SOMO: An oversampling approach based on self-organized maps and geometric SMOTE", Expert
    Systems with Applications, vol. 183,115230, 2021.][G-SOMO]

Publications using Geometric-SMOTE:

- Douzas, G., Bacao, B. (2019). Geometric SMOTE: a geometrically enhanced
  drop-in replacement for SMOTE. Information Sciences, 501, 118-135.
  <https://doi.org/10.1016/j.ins.2019.06.007>

- Fonseca, J., Douzas, G., Bacao, F. (2021). Increasing the Effectiveness of
  Active Learning: Introducing Artificial Data Generation in Active Learning
  for Land Use/Land Cover Classification. Remote Sensing, 13(13), 2619.
  <https://doi.org/10.3390/rs13132619>

- Douzas, G., Bacao, F., Fonseca, J., Khudinyan, M. (2019). Imbalanced
  Learning in Land Cover Classification: Improving Minority Classes’
  Prediction Accuracy Using the Geometric SMOTE Algorithm. Remote Sensing,
  11(24), 3040. <https://doi.org/10.3390/rs11243040>


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "imbalanced-learn-extra",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.13,>=3.10",
    "maintainer_email": null,
    "keywords": "machine learning, imbalanced learning, oversampling",
    "author": null,
    "author_email": "Georgios Douzas <gdouzas@icloud.com>",
    "download_url": "https://files.pythonhosted.org/packages/27/cf/1838bdd28003239a5dbdc1b8580de7a5e7a75cc0ae92552358bc6bfbcc28/imbalanced-learn-extra-0.2.5.tar.gz",
    "platform": null,
    "description": "[scikit-learn]: <http://scikit-learn.org/stable/>\n[imbalanced-learn]: <http://imbalanced-learn.org/stable/>\n[SOMO]: <https://www.sciencedirect.com/science/article/abs/pii/S0957417417302324>\n[KMeans-SMOTE]: <https://www.sciencedirect.com/science/article/abs/pii/S0020025518304997>\n[G-SOMO]: <https://www.sciencedirect.com/science/article/abs/pii/S095741742100662X>\n[black badge]: <https://img.shields.io/badge/%20style-black-000000.svg>\n[black]: <https://github.com/psf/black>\n[docformatter badge]: <https://img.shields.io/badge/%20formatter-docformatter-fedcba.svg>\n[docformatter]: <https://github.com/PyCQA/docformatter>\n[ruff badge]: <https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/charliermarsh/ruff/main/assets/badge/v1.json>\n[ruff]: <https://github.com/charliermarsh/ruff>\n[mypy badge]: <http://www.mypy-lang.org/static/mypy_badge.svg>\n[mypy]: <http://mypy-lang.org>\n[mkdocs badge]: <https://img.shields.io/badge/docs-mkdocs%20material-blue.svg?style=flat>\n[mkdocs]: <https://squidfunk.github.io/mkdocs-material>\n[version badge]: <https://img.shields.io/pypi/v/imbalanced-learn-extra.svg>\n[pythonversion badge]: <https://img.shields.io/pypi/pyversions/imbalanced-learn-extra.svg>\n[downloads badge]: <https://img.shields.io/pypi/dd/imbalanced-learn-extra>\n[gitter]: <https://gitter.im/imbalanced-learn-extra/community>\n[gitter badge]: <https://badges.gitter.im/join%20chat.svg>\n[discussions]: <https://github.com/georgedouzas/imbalanced-learn-extra/discussions>\n[discussions badge]: <https://img.shields.io/github/discussions/georgedouzas/imbalanced-learn-extra>\n[ci]: <https://github.com/georgedouzas/imbalanced-learn-extra/actions?query=workflow>\n[ci badge]: <https://github.com/georgedouzas/imbalanced-learn-extra/actions/workflows/ci.yml/badge.svg?branch=main>\n[doc]: <https://github.com/georgedouzas/imbalanced-learn-extra/actions?query=workflow>\n[doc badge]: <https://github.com/georgedouzas/imbalanced-learn-extra/actions/workflows/doc.yml/badge.svg?branch=main>\n\n# imbalanced-learn-extra\n\n[![ci][ci badge]][ci] [![doc][doc badge]][doc]\n\n| Category          | Tools    |\n| ------------------| -------- |\n| **Development**   | [![black][black badge]][black] [![ruff][ruff badge]][ruff] [![mypy][mypy badge]][mypy] [![docformatter][docformatter badge]][docformatter] |\n| **Package**       | ![version][version badge] ![pythonversion][pythonversion badge] ![downloads][downloads badge] |\n| **Documentation** | [![mkdocs][mkdocs badge]][mkdocs]|\n| **Communication** | [![gitter][gitter badge]][gitter] [![discussions][discussions badge]][discussions] |\n\n## Introduction\n\n`imbalanced-learn-extra` is a Python package that extends [imbalanced-learn]. It implements algorithms that are not included in\n[imbalanced-learn] due to their novelty or lower citation number. The current version includes the following:\n\n- A general interface for clustering-based oversampling algorithms.\n\n- The Geometric SMOTE algorithm. It is a geometrically enhanced drop-in replacement for SMOTE, that handles numerical as well as\ncategorical features.\n\n## Installation\n\nFor user installation, `imbalanced-learn-extra` is currently available on the PyPi's repository, and you can\ninstall it via `pip`:\n\n```bash\npip install imbalanced-learn-extra\n```\n\nDevelopment installation requires cloning the repository and then using [PDM](https://github.com/pdm-project/pdm) to install the\nproject as well as the main and development dependencies:\n\n```bash\ngit clone https://github.com/georgedouzas/imbalanced-learn-extra.git\ncd imbalanced-learn-extra\npdm install\n```\n\nSOM clusterer requires optional dependencies:\n\n```bash\npip install imbalanced-learn-extra[som]\n```\n\n## Usage\n\nAll the classes included in `imbalanced-learn-extra` follow the [imbalanced-learn] API using the functionality of the base\noversampler. Using [scikit-learn] convention, the data are represented as follows:\n\n- Input data `X`: 2D array-like or sparse matrices.\n- Targets `y`: 1D array-like.\n\nThe oversamplers implement a `fit` method to learn from `X` and `y`:\n\n```python\noversampler.fit(X, y)\n```\n\nThey also implement a `fit_resample` method to resample `X` and `y`:\n\n```python\nX_resampled, y_resampled = clustering_based_oversampler.fit_resample(X, y)\n```\n\n## Citing `imbalanced-learn-extra`\n\nPublications using clustering-based oversampling:\n\n- [G. Douzas, F. Bacao, \"Self-Organizing Map Oversampling (SOMO) for imbalanced data set learning\", Expert Systems with\n    Applications, vol. 82, pp. 40-52, 2017.][SOMO]\n- [G. Douzas, F. Bacao, F. Last, \"Improving imbalanced learning through a heuristic oversampling method based on k-means and\n    SMOTE\", Information Sciences, vol. 465, pp. 1-20, 2018.][KMeans-SMOTE]\n- [G. Douzas, F. Bacao, F. Last, \"G-SOMO: An oversampling approach based on self-organized maps and geometric SMOTE\", Expert\n    Systems with Applications, vol. 183,115230, 2021.][G-SOMO]\n\nPublications using Geometric-SMOTE:\n\n- Douzas, G., Bacao, B. (2019). Geometric SMOTE: a geometrically enhanced\n  drop-in replacement for SMOTE. Information Sciences, 501, 118-135.\n  <https://doi.org/10.1016/j.ins.2019.06.007>\n\n- Fonseca, J., Douzas, G., Bacao, F. (2021). Increasing the Effectiveness of\n  Active Learning: Introducing Artificial Data Generation in Active Learning\n  for Land Use/Land Cover Classification. Remote Sensing, 13(13), 2619.\n  <https://doi.org/10.3390/rs13132619>\n\n- Douzas, G., Bacao, F., Fonseca, J., Khudinyan, M. (2019). Imbalanced\n  Learning in Land Cover Classification: Improving Minority Classes\u2019\n  Prediction Accuracy Using the Geometric SMOTE Algorithm. Remote Sensing,\n  11(24), 3040. <https://doi.org/10.3390/rs11243040>\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "An implementation of novel oversampling algorithms.",
    "version": "0.2.5",
    "project_urls": {
        "Changelog": "https://georgedouzas.github.io/imbalanced-learn-extra/changelog",
        "Discussions": "https://github.com/georgedouzas/imbalanced-learn-extra/discussions",
        "Documentation": "https://georgedouzas.github.io/imbalanced-learn-extra",
        "Funding": "https://github.com/sponsors/georgedouzas",
        "Gitter": "https://gitter.im/imbalanced-learn-extra/community",
        "Homepage": "https://georgedouzas.github.io/imbalanced-learn-extra",
        "Issues": "https://github.com/georgedouzas/imbalanced-learn-extra/issues",
        "Repository": "https://github.com/georgedouzas/imbalanced-learn-extra"
    },
    "split_keywords": [
        "machine learning",
        " imbalanced learning",
        " oversampling"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0d2262ed3dc211dddc3cc8fab2bb7e965ed83cf4cb21d8449a1a930d5f102404",
                "md5": "01149ac03d840bd458bcff56bdb83a76",
                "sha256": "c21ecbfc724908348fa9545d50327216624952e2365295d4968eecad338285e5"
            },
            "downloads": -1,
            "filename": "imbalanced_learn_extra-0.2.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "01149ac03d840bd458bcff56bdb83a76",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.13,>=3.10",
            "size": 35006,
            "upload_time": "2024-11-07T08:00:43",
            "upload_time_iso_8601": "2024-11-07T08:00:43.145116Z",
            "url": "https://files.pythonhosted.org/packages/0d/22/62ed3dc211dddc3cc8fab2bb7e965ed83cf4cb21d8449a1a930d5f102404/imbalanced_learn_extra-0.2.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "27cf1838bdd28003239a5dbdc1b8580de7a5e7a75cc0ae92552358bc6bfbcc28",
                "md5": "43c09dbb6b65924a579ab2982abfc051",
                "sha256": "6c1b6ce8f238e67567686efd4e1412e809882ce61de014abd041a2d45c14e4aa"
            },
            "downloads": -1,
            "filename": "imbalanced-learn-extra-0.2.5.tar.gz",
            "has_sig": false,
            "md5_digest": "43c09dbb6b65924a579ab2982abfc051",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.13,>=3.10",
            "size": 36212,
            "upload_time": "2024-11-07T08:00:44",
            "upload_time_iso_8601": "2024-11-07T08:00:44.567119Z",
            "url": "https://files.pythonhosted.org/packages/27/cf/1838bdd28003239a5dbdc1b8580de7a5e7a75cc0ae92552358bc6bfbcc28/imbalanced-learn-extra-0.2.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-07 08:00:44",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "georgedouzas",
    "github_project": "imbalanced-learn-extra",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "imbalanced-learn-extra"
}
        
Elapsed time: 0.46379s