Name | imbalanced-spdf JSON |
Version |
0.0.18
JSON |
| download |
home_page | None |
Summary | A Python package for imbalanced learning with ensemble learning. |
upload_time | 2025-01-31 12:37:32 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.9 |
license | MIT License
Copyright (c) 2025 Rahul Goswami
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
|
keywords |
imbalanced data
ensemble learning
surface to volume ratio
computational complexity
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|






> A rich documentation is available at [Read the Docs](https://imbalanced-spdf.readthedocs.io/en/latest/)
# Shape Penalized Decision Forests
Shape Penalized Decision Forests, for training ensemble classifiers tailored for imbalanced datasets. This package provides two primary implementations:
- **SPBoDF (Shape Penalized Boosting Decision Forest)**: A boosting ensemble method that builds multiple trees sequentially, adjusting the weights of samples to focus on harder-to-classify instances.
- **SPBaDF (Shape Penalized Bagging Decision Forest)**: A bagging ensemble method that builds multiple trees independently on bootstrap samples of the dataset, improving robustness and reducing overfitting.
Both implementations use the concept of **Surface-to-Volume Regularization (SVR)** to penalize irregular decision boundaries, thus improving generalization and addressing challenges associated with imbalanced datasets.
## Key Features
- **Boosting and Bagging**: Two ensemble approaches tailored for classification tasks.
- **Shape Penalization**: Incorporates a novel regularization technique to control decision boundary complexity.
- **Imbalanced Data Handling**: Designed with class imbalance in mind, using weighting and bootstrapping techniques.
- **Scikit-learn Compatible**: Implements `BaseEstimator` and `ClassifierMixin`, making it seamlessly integrable with the Scikit-learn ecosystem.
- **Customizability**: Hyperparameters such as the number of trees, shape penalty, and maximal leaves are configurable for fine-tuning.
---
## Installation
1. Downloading Locally and Installing
```bash
git clone https://www.github.com/yuvrajiro/imbalanced-spdf.git
cd imbalance-spdf
```
2. Install dependencies:
```bash
pip install -r requirements.txt
```
3. Install the package:
```bash
python install -e .
```
2. Using pip install from GitHub
```bash
pip install git+https://www.github.com/yuvrajiro/imbalanced-spdf.git
```
3. Using pip install from PyPi
```bash
pip install imbalanced-spdf
```
---
## Usage
### 1. SPBoDF (Boosting)
#### Example
```python
import numpy as np
from imbalanced_spdf.ensemble import SPBoDF
# Generate synthetic data
X_train = np.random.rand(100, 5)
y_train = np.random.randint(0, 2, 100)
# Initialize and fit SPBoDF
boosting_model = SPBoDF(n_trees=50, weight=2, pen=1.0, random_state=42)
boosting_model.fit(X_train, y_train)
# Predict
X_test = np.random.rand(20, 5)
y_pred = boosting_model.predict(X_test)
print("Predictions:", y_pred)
```
### 2. SPBaDF (Bagging)
#### Example
```python
from imbalanced_spdf.ensemble import SPBaDF
# Generate synthetic data
X_train = np.random.rand(100, 5)
y_train = np.random.randint(0, 2, 100)
# Initialize and fit SPBaDF
bagging_model = SPBaDF(n_trees=50, weight=2, pen=1.0, random_state=42)
bagging_model.fit(X_train, y_train)
# Predict
X_test = np.random.rand(20, 5)
y_pred = bagging_model.predict(X_test)
print("Predictions:", y_pred)
```
---
## API Reference
### `SPBoDF`
A boosting ensemble classifier that uses SVR-regularized trees to handle imbalanced datasets.
#### Parameters:
- `n_trees` (int): Number of trees in the ensemble (default: 40).
- `weight` (float): Weight for the minority class to address imbalance (default: 1).
- `pen` (float): Regularization penalty controlling decision boundary complexity (default: 0).
- `maximal_leaves` (int or float, optional): Maximum leaves per tree. Defaults to `2 * sqrt(n_samples) * 0.3333`.
- `random_state` (int): Random seed for reproducibility (default: 23).
#### Methods:
- `fit(X, y)`: Fits the ensemble on the training data.
- `predict(X)`: Predicts the labels of the test data.
### `SPBaDF`
A bagging ensemble classifier that uses SVR-regularized trees to improve robustness.
#### Parameters:
- `n_trees` (int): Number of trees in the ensemble (default: 40).
- `weight` (float): Weight for the minority class to address imbalance (default: 1).
- `pen` (float): Regularization penalty controlling decision boundary complexity (default: 0).
- `maximal_leaves` (int or float, optional): Maximum leaves per tree. Defaults to `2 * sqrt(n_samples) * 0.3333`.
- `random_state` (int): Random seed for reproducibility (default: 23).
#### Methods:
- `fit(X, y)`: Fits the ensemble on the training data.
- `predict(X)`: Predicts the labels of the test data.
---
## How It Works
1. **SPBoDF (Boosting)**:
- Trees are built sequentially, with sample weights updated after each iteration to focus on misclassified samples.
- Regularization (SVR) penalizes irregular decision boundaries to avoid overfitting.
2. **SPBaDF (Bagging)**:
- Trees are built independently on bootstrap samples of the training data.
- Each tree focuses on non-constant feature subsets, improving robustness and generalization.
## Dataset Details
| Dataset | Available at | Comments (if any) |
|---------------------| --- |------------------------------------------------------------------------|
| Appendicitis | https://github.com/ZixiaoShen/Datasets/blob/master/UCI/C2_F7_S106_Appendicitis/Appendicitis.csv | ----------- |
| Data User Modelling | http://archive.ics.uci.edu/ml/machine-learning-databases/00257/Data_User_Modeling_Dataset_Hamdi%20Tolga%20KAHRAMAN.xls | ------------- |
| Ecoli | https://raw.githubusercontent.com/jbrownlee/Datasets/master/ecoli.csv | 'pp' is considered as class 1 and cp, im, om, omL, imL, imU as class 0 | ------------------ |
| Ecoli-0-6-7-vs-5 | https://github.com/w4k2/umce/blob/master/datasets/imb_IRhigherThan9p2/ecoli-0-6-7_vs_5/ecoli-0-6-7_vs_5.dat | ------ |
| Estate | https://github.com/MKLab-ITI/Posterior-Rebalancing/blob/1a0b561e6418e9df25a75006206598bff2babe2c/data/hddt/imbalanced/estate.data#L4 | ------ |
| Fertility Diagonosis | https://archive.ics.uci.edu/ml/machine-learning-databases/00244/fertility_Diagnosis.txt | ------ |
| Imbalance-scale | https://archive.ics.uci.edu/ml/machine-learning-databases/balance-scale/balance-scale.data | 'B' is conisdered as 1, otherwise 0 |
| Oil | https://github.com/MKLab-ITI/Posterior-Rebalancing/blob/1a0b561e6418e9df25a75006206598bff2babe2c/data/hddt/imbalanced/oil.data | ------ |
| Page-blocks0 | https://github.com/w4k2/DSE/blob/ac0e824d3a7507fe9d57356150cef0def5c4a36d/streams/real/page-blocks0.arff#L4 | ------ |
| Winequality-red | https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv | ------- |
| Yeast-0-3-5-9-vs-7-8 | https://github.com/w4k2/DSE/blob/ac0e824d3a7507fe9d57356150cef0def5c4a36d/streams/real/yeast-0-3-5-9_vs_7-8.arff | ------ |
| car-vgood | https://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data | 0 if 'negative' otherwise 1 |
| cleveland_0_vs_4 | https://github.com/Jaga7/Metody-Sztucznej-Inteligencji/blob/d46ae0c897b5524d5e0c9b9b800e190b9727fd52/PROJEKT/datasets/cleveland_0_vs_4.csv#L4 | ------ |
| haberman | https://archive.ics.uci.edu/ml/machine-learning-databases/haberman/haberman.data | |
| led7digit-0-2-4-5-6-7-8-9_vs_1 | https://github.com/ikurek/PWr-Uczenie-Maszyn/blob/f9561a959c49229f22e489b17ccb23b52e99d2a2/data/led7digit-0-2-4-5-6-7-8-9_vs_1.dat#L4 | ------ |
| new-thyroid1 | https://github.com/jamesrobertlloyd/dataset-space/blob/d195fd8748ba8def627ae2e727395aee608952ec/data/class/raw/keel/new-thyroid1.dat#L4 | ------ |
| page-blocks-1-3_vs_4 | https://github.com/ikurek/PWr-Uczenie-Maszyn/blob/f9561a959c49229f22e489b17ccb23b52e99d2a2/data/page-blocks-1-3_vs_4.dat | ------ |
| shuttle-c0-vs-c4 | https://github.com/ikurek/PWr-Uczenie-Maszyn/blob/f9561a959c49229f22e489b17ccb23b52e99d2a2/data/shuttle-c0-vs-c4.dat | ------ |
|vehicle3 | https://github.com/jamesrobertlloyd/dataset-space/blob/d195fd8748ba8def627ae2e727395aee608952ec/data/class/raw/keel/vehicle3.dat | ------ |
| yeast-2_vs_8 | https://github.com/jamesrobertlloyd/dataset-space/blob/d195fd8748ba8def627ae2e727395aee608952ec/data/class/raw/keel/yeast-2_vs_8.dat | ------ |
## License
This project is licensed under the MIT License. See the `LICENSE` file for details.
## Citation
If you are using this package in your research, please consider citing the following paper:
```bibtex
Shape Penalized Decision Forests for Imbalanced Data Classification : Rahul Goswami, Aindrila Garai, Payel Sadhukhan, Palash Ghosh, Tanujit Chakraborty
```
---
## References
- Zhu, Y., Li, C., & Dunson, D. B. (2023). "Classification Trees for Imbalanced Data: Surface-to-Volume Regularization." Journal of the American Statistical Association.
Raw data
{
"_id": null,
"home_page": null,
"name": "imbalanced-spdf",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "Imbalanced Data, Ensemble Learning, Surface to Volume Ratio, Computational Complexity",
"author": null,
"author_email": "\"Rahul Goswami, Aindrila Garai, Payel Sadhukhan, Palash Ghosh, Tanujit Chakraborty\" <yuvrajiro@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/01/e6/022380d1b0153b4a5e7d61f0ab26d100b799707db0e93e9320825c35702e/imbalanced_spdf-0.0.18.tar.gz",
"platform": null,
"description": "\r\n\r\n\r\n\r\n\r\n\r\n\r\n> A rich documentation is available at [Read the Docs](https://imbalanced-spdf.readthedocs.io/en/latest/)\r\n\r\n\r\n# Shape Penalized Decision Forests\r\n\r\nShape Penalized Decision Forests, for training ensemble classifiers tailored for imbalanced datasets. This package provides two primary implementations:\r\n\r\n- **SPBoDF (Shape Penalized Boosting Decision Forest)**: A boosting ensemble method that builds multiple trees sequentially, adjusting the weights of samples to focus on harder-to-classify instances.\r\n\r\n- **SPBaDF (Shape Penalized Bagging Decision Forest)**: A bagging ensemble method that builds multiple trees independently on bootstrap samples of the dataset, improving robustness and reducing overfitting.\r\n\r\nBoth implementations use the concept of **Surface-to-Volume Regularization (SVR)** to penalize irregular decision boundaries, thus improving generalization and addressing challenges associated with imbalanced datasets.\r\n\r\n## Key Features\r\n\r\n- **Boosting and Bagging**: Two ensemble approaches tailored for classification tasks.\r\n- **Shape Penalization**: Incorporates a novel regularization technique to control decision boundary complexity.\r\n- **Imbalanced Data Handling**: Designed with class imbalance in mind, using weighting and bootstrapping techniques.\r\n- **Scikit-learn Compatible**: Implements `BaseEstimator` and `ClassifierMixin`, making it seamlessly integrable with the Scikit-learn ecosystem.\r\n- **Customizability**: Hyperparameters such as the number of trees, shape penalty, and maximal leaves are configurable for fine-tuning.\r\n\r\n---\r\n\r\n## Installation\r\n\r\n1. Downloading Locally and Installing\r\n\r\n ```bash\r\n git clone https://www.github.com/yuvrajiro/imbalanced-spdf.git\r\n cd imbalance-spdf\r\n ```\r\n\r\n2. Install dependencies:\r\n\r\n ```bash\r\n pip install -r requirements.txt\r\n ```\r\n3. Install the package:\r\n\r\n ```bash\r\n python install -e .\r\n ```\r\n2. Using pip install from GitHub\r\n\r\n ```bash\r\n pip install git+https://www.github.com/yuvrajiro/imbalanced-spdf.git\r\n ```\r\n3. Using pip install from PyPi\r\n\r\n ```bash\r\n pip install imbalanced-spdf\r\n ```\r\n \r\n\r\n---\r\n\r\n## Usage\r\n\r\n### 1. SPBoDF (Boosting)\r\n\r\n#### Example\r\n\r\n```python\r\nimport numpy as np\r\nfrom imbalanced_spdf.ensemble import SPBoDF\r\n\r\n# Generate synthetic data\r\nX_train = np.random.rand(100, 5)\r\ny_train = np.random.randint(0, 2, 100)\r\n\r\n# Initialize and fit SPBoDF\r\nboosting_model = SPBoDF(n_trees=50, weight=2, pen=1.0, random_state=42)\r\nboosting_model.fit(X_train, y_train)\r\n\r\n# Predict\r\nX_test = np.random.rand(20, 5)\r\ny_pred = boosting_model.predict(X_test)\r\nprint(\"Predictions:\", y_pred)\r\n```\r\n\r\n### 2. SPBaDF (Bagging)\r\n\r\n#### Example\r\n\r\n```python\r\nfrom imbalanced_spdf.ensemble import SPBaDF\r\n\r\n# Generate synthetic data\r\nX_train = np.random.rand(100, 5)\r\ny_train = np.random.randint(0, 2, 100)\r\n\r\n# Initialize and fit SPBaDF\r\nbagging_model = SPBaDF(n_trees=50, weight=2, pen=1.0, random_state=42)\r\nbagging_model.fit(X_train, y_train)\r\n\r\n# Predict\r\nX_test = np.random.rand(20, 5)\r\ny_pred = bagging_model.predict(X_test)\r\nprint(\"Predictions:\", y_pred)\r\n```\r\n\r\n---\r\n\r\n## API Reference\r\n\r\n### `SPBoDF`\r\n\r\nA boosting ensemble classifier that uses SVR-regularized trees to handle imbalanced datasets.\r\n\r\n#### Parameters:\r\n\r\n- `n_trees` (int): Number of trees in the ensemble (default: 40).\r\n- `weight` (float): Weight for the minority class to address imbalance (default: 1).\r\n- `pen` (float): Regularization penalty controlling decision boundary complexity (default: 0).\r\n- `maximal_leaves` (int or float, optional): Maximum leaves per tree. Defaults to `2 * sqrt(n_samples) * 0.3333`.\r\n- `random_state` (int): Random seed for reproducibility (default: 23).\r\n\r\n#### Methods:\r\n\r\n- `fit(X, y)`: Fits the ensemble on the training data.\r\n- `predict(X)`: Predicts the labels of the test data.\r\n\r\n### `SPBaDF`\r\n\r\nA bagging ensemble classifier that uses SVR-regularized trees to improve robustness.\r\n\r\n#### Parameters:\r\n\r\n- `n_trees` (int): Number of trees in the ensemble (default: 40).\r\n- `weight` (float): Weight for the minority class to address imbalance (default: 1).\r\n- `pen` (float): Regularization penalty controlling decision boundary complexity (default: 0).\r\n- `maximal_leaves` (int or float, optional): Maximum leaves per tree. Defaults to `2 * sqrt(n_samples) * 0.3333`.\r\n- `random_state` (int): Random seed for reproducibility (default: 23).\r\n\r\n#### Methods:\r\n\r\n- `fit(X, y)`: Fits the ensemble on the training data.\r\n- `predict(X)`: Predicts the labels of the test data.\r\n\r\n---\r\n\r\n## How It Works\r\n\r\n1. **SPBoDF (Boosting)**:\r\n - Trees are built sequentially, with sample weights updated after each iteration to focus on misclassified samples.\r\n - Regularization (SVR) penalizes irregular decision boundaries to avoid overfitting.\r\n\r\n2. **SPBaDF (Bagging)**:\r\n - Trees are built independently on bootstrap samples of the training data.\r\n - Each tree focuses on non-constant feature subsets, improving robustness and generalization.\r\n\r\n\r\n## Dataset Details\r\n\r\n\r\n| Dataset | Available at | Comments (if any) |\r\n|---------------------| --- |------------------------------------------------------------------------|\r\n| Appendicitis | https://github.com/ZixiaoShen/Datasets/blob/master/UCI/C2_F7_S106_Appendicitis/Appendicitis.csv | ----------- |\r\n| Data User Modelling | http://archive.ics.uci.edu/ml/machine-learning-databases/00257/Data_User_Modeling_Dataset_Hamdi%20Tolga%20KAHRAMAN.xls | ------------- |\r\n| Ecoli | https://raw.githubusercontent.com/jbrownlee/Datasets/master/ecoli.csv | 'pp' is considered as class 1 and cp, im, om, omL, imL, imU as class 0 | ------------------ |\r\n| Ecoli-0-6-7-vs-5 | https://github.com/w4k2/umce/blob/master/datasets/imb_IRhigherThan9p2/ecoli-0-6-7_vs_5/ecoli-0-6-7_vs_5.dat | ------ |\r\n| Estate | https://github.com/MKLab-ITI/Posterior-Rebalancing/blob/1a0b561e6418e9df25a75006206598bff2babe2c/data/hddt/imbalanced/estate.data#L4 | ------ |\r\n| Fertility Diagonosis | https://archive.ics.uci.edu/ml/machine-learning-databases/00244/fertility_Diagnosis.txt | ------ |\r\n| Imbalance-scale | https://archive.ics.uci.edu/ml/machine-learning-databases/balance-scale/balance-scale.data | 'B' is conisdered as 1, otherwise 0 |\r\n| Oil | https://github.com/MKLab-ITI/Posterior-Rebalancing/blob/1a0b561e6418e9df25a75006206598bff2babe2c/data/hddt/imbalanced/oil.data | ------ |\r\n| Page-blocks0 | https://github.com/w4k2/DSE/blob/ac0e824d3a7507fe9d57356150cef0def5c4a36d/streams/real/page-blocks0.arff#L4 | ------ |\r\n| Winequality-red | https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv | ------- |\r\n| Yeast-0-3-5-9-vs-7-8 | https://github.com/w4k2/DSE/blob/ac0e824d3a7507fe9d57356150cef0def5c4a36d/streams/real/yeast-0-3-5-9_vs_7-8.arff | ------ |\r\n| car-vgood | https://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data | 0 if 'negative' otherwise 1 |\r\n| cleveland_0_vs_4 | https://github.com/Jaga7/Metody-Sztucznej-Inteligencji/blob/d46ae0c897b5524d5e0c9b9b800e190b9727fd52/PROJEKT/datasets/cleveland_0_vs_4.csv#L4 | ------ |\r\n| haberman | https://archive.ics.uci.edu/ml/machine-learning-databases/haberman/haberman.data | |\r\n| led7digit-0-2-4-5-6-7-8-9_vs_1 | https://github.com/ikurek/PWr-Uczenie-Maszyn/blob/f9561a959c49229f22e489b17ccb23b52e99d2a2/data/led7digit-0-2-4-5-6-7-8-9_vs_1.dat#L4 | ------ |\r\n| new-thyroid1 | https://github.com/jamesrobertlloyd/dataset-space/blob/d195fd8748ba8def627ae2e727395aee608952ec/data/class/raw/keel/new-thyroid1.dat#L4 | ------ |\r\n| page-blocks-1-3_vs_4 | https://github.com/ikurek/PWr-Uczenie-Maszyn/blob/f9561a959c49229f22e489b17ccb23b52e99d2a2/data/page-blocks-1-3_vs_4.dat | ------ |\r\n| shuttle-c0-vs-c4 | https://github.com/ikurek/PWr-Uczenie-Maszyn/blob/f9561a959c49229f22e489b17ccb23b52e99d2a2/data/shuttle-c0-vs-c4.dat | ------ |\r\n|vehicle3 | https://github.com/jamesrobertlloyd/dataset-space/blob/d195fd8748ba8def627ae2e727395aee608952ec/data/class/raw/keel/vehicle3.dat | ------ |\r\n| yeast-2_vs_8 | https://github.com/jamesrobertlloyd/dataset-space/blob/d195fd8748ba8def627ae2e727395aee608952ec/data/class/raw/keel/yeast-2_vs_8.dat | ------ |\r\n\r\n\r\n## License\r\n\r\nThis project is licensed under the MIT License. See the `LICENSE` file for details.\r\n\r\n## Citation\r\n\r\nIf you are using this package in your research, please consider citing the following paper:\r\n\r\n```bibtex\r\nShape Penalized Decision Forests for Imbalanced Data Classification : Rahul Goswami, Aindrila Garai, Payel Sadhukhan, Palash Ghosh, Tanujit Chakraborty\r\n```\r\n\r\n---\r\n\r\n## References\r\n\r\n- Zhu, Y., Li, C., & Dunson, D. B. (2023). \"Classification Trees for Imbalanced Data: Surface-to-Volume Regularization.\" Journal of the American Statistical Association.\r\n\r\n\r\n\r\n",
"bugtrack_url": null,
"license": "MIT License\r\n \r\n Copyright (c) 2025 Rahul Goswami \r\n \r\n Permission is hereby granted, free of charge, to any person obtaining a copy\r\n of this software and associated documentation files (the \"Software\"), to deal\r\n in the Software without restriction, including without limitation the rights\r\n to use, copy, modify, merge, publish, distribute, sublicense, and/or sell\r\n copies of the Software, and to permit persons to whom the Software is\r\n furnished to do so, subject to the following conditions:\r\n \r\n The above copyright notice and this permission notice shall be included in all\r\n copies or substantial portions of the Software.\r\n \r\n THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\r\n IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\r\n FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\r\n AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\r\n LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\r\n OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE\r\n SOFTWARE.\r\n ",
"summary": "A Python package for imbalanced learning with ensemble learning.",
"version": "0.0.18",
"project_urls": {
"Bug Tracker": "https://github.com/yuvrajiro/imbalanced-spdf/issues",
"Documentation": "https://imbalanced-spdf.readthedocs.io",
"Homepage": "https://github.com/yuvrajiro/imbalanced-spdf",
"Release Notes": "https://imbalanced-spdf.readthedocs.io/en/latest/release_notes.html",
"Source Code": "https://github.com/yuvrajiro/imbalanced-spdf"
},
"split_keywords": [
"imbalanced data",
" ensemble learning",
" surface to volume ratio",
" computational complexity"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "6bf9ea67e92983039eb7bdfc88460dd6a555227d656ccb57b045e103f3158264",
"md5": "8eca055eb60bffcd39e92a613bf330fa",
"sha256": "6ed7170083d4d21c3a133df42b1970d4be847783cca1fcc257d128afa8374e52"
},
"downloads": -1,
"filename": "imbalanced_spdf-0.0.18-py3-none-any.whl",
"has_sig": false,
"md5_digest": "8eca055eb60bffcd39e92a613bf330fa",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 17583,
"upload_time": "2025-01-31T12:37:29",
"upload_time_iso_8601": "2025-01-31T12:37:29.698372Z",
"url": "https://files.pythonhosted.org/packages/6b/f9/ea67e92983039eb7bdfc88460dd6a555227d656ccb57b045e103f3158264/imbalanced_spdf-0.0.18-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "01e6022380d1b0153b4a5e7d61f0ab26d100b799707db0e93e9320825c35702e",
"md5": "a5082d0b51fe1b7f850c13fe5b4b77ef",
"sha256": "e90ca8c1bf7160b79ff0fd5ae227e9bb09c023f70b70674c6e9be01e636203b3"
},
"downloads": -1,
"filename": "imbalanced_spdf-0.0.18.tar.gz",
"has_sig": false,
"md5_digest": "a5082d0b51fe1b7f850c13fe5b4b77ef",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 20504,
"upload_time": "2025-01-31T12:37:32",
"upload_time_iso_8601": "2025-01-31T12:37:32.313953Z",
"url": "https://files.pythonhosted.org/packages/01/e6/022380d1b0153b4a5e7d61f0ab26d100b799707db0e93e9320825c35702e/imbalanced_spdf-0.0.18.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-31 12:37:32",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "yuvrajiro",
"github_project": "imbalanced-spdf",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "imbalanced-spdf"
}