Name | imgalz JSON |
Version |
0.0.7.3
JSON |
| download |
home_page | None |
Summary | onnx pipline |
upload_time | 2025-07-16 09:25:38 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.8 |
license | MIT |
keywords |
onnx
yolov5
yolov8
mmpose
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# imgalz: A Modular Library for Image Analysis by onnx

## Usage
See below for quickstart installation and usage examples.
All guidance can refer to full [imgalz docs](https://pleb631.github.io/imgalz)
### Installation
```bash
pip install .[all]
# or
pip install imgalz[all]
```
### example
```python
import cv2
import numpy as np
import imgalz
from imgalz.models.detector import YOLOv5
# Use local path if available, otherwise download from Hugging Face
model = YOLOv5(model_path = "yolov5n.onnx")
# model = YOLOv5("yolov6n.onnx")
im = imgalz.imread("resources/bus.jpg",1)
bboxes = model.detect(im, aug=True)
# plot box on img
for box in bboxes:
cv2.rectangle(
im, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (0, 0, 255), 2
)
imgalz.cv_imshow("yolov5-det", im)
```
You can refer to the specific usage by [demo](https://github.com/pleb631/imgalz/tree/main/demo)
## Optional Models
### Detector
- YOLOv5/6
- YOLOv8/11
- YOLOv8pose
- YOLOv8seg
### Tracker
- ByteTrack
- Motpy
- NorFair
- OCSort
### Pose
- ViT-Pose
## todo
- add mmpose inference code
- add more tool for image processing
- add more tracker and refact code
## Weights
The ONNX model in the example is exported directly from the official code and can be obtained from the [huggingface](https://huggingface.co/pleb631/onnxmodel).
Raw data
{
"_id": null,
"home_page": null,
"name": "imgalz",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "onnx, YOLOv5, YOLOv8, mmpose",
"author": null,
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/10/f8/4787343469771a6dd9c0f3253bf4ba2809db62ae7db2d8633dd7e8d86943/imgalz-0.0.7.3.tar.gz",
"platform": null,
"description": "# imgalz: A Modular Library for Image Analysis by onnx\n\n\n\n## Usage\n\nSee below for quickstart installation and usage examples.\nAll guidance can refer to full [imgalz docs](https://pleb631.github.io/imgalz)\n\n### Installation\n\n```bash\npip install .[all]\n# or\npip install imgalz[all]\n```\n\n### example\n\n```python\nimport cv2\nimport numpy as np\n\nimport imgalz\nfrom imgalz.models.detector import YOLOv5\n\n# Use local path if available, otherwise download from Hugging Face\nmodel = YOLOv5(model_path = \"yolov5n.onnx\")\n# model = YOLOv5(\"yolov6n.onnx\")\nim = imgalz.imread(\"resources/bus.jpg\",1)\nbboxes = model.detect(im, aug=True)\n# plot box on img\nfor box in bboxes:\n cv2.rectangle(\n im, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (0, 0, 255), 2\n )\n\nimgalz.cv_imshow(\"yolov5-det\", im)\n\n```\n\nYou can refer to the specific usage by [demo](https://github.com/pleb631/imgalz/tree/main/demo)\n\n## Optional Models\n\n### Detector\n\n- YOLOv5/6\n- YOLOv8/11\n- YOLOv8pose\n- YOLOv8seg\n\n### Tracker\n\n- ByteTrack\n- Motpy\n- NorFair\n- OCSort\n\n### Pose\n\n- ViT-Pose\n\n## todo\n\n- add mmpose inference code\n- add more tool for image processing\n- add more tracker and refact code\n\n## Weights\n\nThe ONNX model in the example is exported directly from the official code and can be obtained from the [huggingface](https://huggingface.co/pleb631/onnxmodel).\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "onnx pipline",
"version": "0.0.7.3",
"project_urls": null,
"split_keywords": [
"onnx",
" yolov5",
" yolov8",
" mmpose"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "ce545bd28f278cace407bda6974354e739aa5767d93bcda0b622caebe13f8d9f",
"md5": "a45d0f0d176dc4e9b8185ae97f02836c",
"sha256": "fcfa3603bfec3fb2615c8f0a10b5f9f52d82078c68bf07ef5d7fe34afde6f146"
},
"downloads": -1,
"filename": "imgalz-0.0.7.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "a45d0f0d176dc4e9b8185ae97f02836c",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 66516,
"upload_time": "2025-07-16T09:25:37",
"upload_time_iso_8601": "2025-07-16T09:25:37.986657Z",
"url": "https://files.pythonhosted.org/packages/ce/54/5bd28f278cace407bda6974354e739aa5767d93bcda0b622caebe13f8d9f/imgalz-0.0.7.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "10f84787343469771a6dd9c0f3253bf4ba2809db62ae7db2d8633dd7e8d86943",
"md5": "ad9ebfd33a635e5c2d411059efcdea36",
"sha256": "43875a74ed7fa39ffa27e2e74ac4f4bb95919c226622e2299bb450ea3a670e62"
},
"downloads": -1,
"filename": "imgalz-0.0.7.3.tar.gz",
"has_sig": false,
"md5_digest": "ad9ebfd33a635e5c2d411059efcdea36",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 56654,
"upload_time": "2025-07-16T09:25:38",
"upload_time_iso_8601": "2025-07-16T09:25:38.872031Z",
"url": "https://files.pythonhosted.org/packages/10/f8/4787343469771a6dd9c0f3253bf4ba2809db62ae7db2d8633dd7e8d86943/imgalz-0.0.7.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-16 09:25:38",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "imgalz"
}