imperio


Nameimperio JSON
Version 0.1.5 PyPI version JSON
download
home_pagehttps://github.com/SigmoidAI/imperio
SummaryImperio is a python sci-kit learn inspired package for feature engineering.
upload_time2023-02-05 15:13:21
maintainer
docs_urlNone
authorSigmoidAI - Păpăluță Vasile, Stojoc Vladimir
requires_python
licenseMIT
keywords ml machine learning feature engineering python data science
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# imperio

Imperio is a python sci-kit learn inspired package for feature engineering. It contains a some feature transformers to make your data more easy to learn from for Machine Learning Algorithms.

This version of imperio has the next methods of feature selection:
1. Box-Cox (BoxCoxTransformer).
2. Clusterize (ClusterizeTransformer).
3. Combinator (CombinatorTransformer).
4. Frequency Imputation Transformer (FrequencyImputationTransformer).
5. log Transformer (LogTransformer).
6. Smoothing (SmoothingTransformer).
7. Spatial-Sign Transformer (SpatialSignTransformer).
8. Target Imputation Transformer (TargetImputationTransformer).
9. Whitening (WhiteningTransformer).
10. Yeo-Johnson Transformer (YeoJohnsonTransformer).
11. ZCA (ZCATransformer).

All these methods work like normal sklearn transformers. They have fit, transform and fit_transform functions implemented.

Additionally every imperio transformer has an apply function which allows to apply an transformation on a pandas Data Frame.

# How to use imperio

To use a transformer from imperio you should just import the transformer from imperio in the following framework:
```python
from imperio import BoxCoxTransformer
```

class names are written above in parantheses.

Next create a object of this algorithm (Box-Cox is used as an example).

```python
method = BoxCoxTransformer()
```

Firstly you should fit the transformer, passing to it a feature matrix (X) and the target array (y).
NOTE: y argument is really used only by the Target-Imputation.

```python
method.fit(X, y)
```

After you fit the model, you can use it for transforming new data, using the transform function. To transform function you should pass only the feature matrix (X).

```python
X_transformed = method.transform(X)
```

Also you can fit and transform the data at the same time using the `fit_transform` function.

```python
X_transformed = method.fit_transform(X)
```

Also you can apply a transformation directly on a pandas DataFrame, choosing the columns that you want to change.

```python
new_df = method.apply(df, 'target', ['col1', 'col2']
```

Some advice:
1. Use `FrequencyImputationTransformer` or `TargetImputationTransformer` for categorical features.
2. Use `BoxCoxTransformer` or `YeoJohnsonTransformer` for numerical features to normalize a feature distribution.
3. Use `SpatialSignTransformer` on normalized data to bring outliers to normal samples.
4. Use `CombinatorTransformer` on tombine different transformers on categorical and numerical columns separately.

With <3 from Sigmoid!

We are open for feedback. Please send your impressions to vladimir.stojoc@gmail.com



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/SigmoidAI/imperio",
    "name": "imperio",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "ml,machine learning,feature engineering,python,data science",
    "author": "SigmoidAI - P\u0103p\u0103lu\u021b\u0103 Vasile, Stojoc Vladimir",
    "author_email": "vladimir.stojoc@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/44/c7/c6222d0ed638e9ca0a111fe1d23fc2325c922dc8cd8b93acc98ab99ee12a/imperio-0.1.5.tar.gz",
    "platform": null,
    "description": "\n# imperio\n\nImperio is a python sci-kit learn inspired package for feature engineering. It contains a some feature transformers to make your data more easy to learn from for Machine Learning Algorithms.\n\nThis version of imperio has the next methods of feature selection:\n1. Box-Cox (BoxCoxTransformer).\n2. Clusterize (ClusterizeTransformer).\n3. Combinator (CombinatorTransformer).\n4. Frequency Imputation Transformer (FrequencyImputationTransformer).\n5. log Transformer (LogTransformer).\n6. Smoothing (SmoothingTransformer).\n7. Spatial-Sign Transformer (SpatialSignTransformer).\n8. Target Imputation Transformer (TargetImputationTransformer).\n9. Whitening (WhiteningTransformer).\n10. Yeo-Johnson Transformer (YeoJohnsonTransformer).\n11. ZCA (ZCATransformer).\n\nAll these methods work like normal sklearn transformers. They have fit, transform and fit_transform functions implemented.\n\nAdditionally every imperio transformer has an apply function which allows to apply an transformation on a pandas Data Frame.\n\n# How to use imperio\n\nTo use a transformer from imperio you should just import the transformer from imperio in the following framework:\n```python\nfrom imperio import BoxCoxTransformer\n```\n\nclass names are written above in parantheses.\n\nNext create a object of this algorithm (Box-Cox is used as an example).\n\n```python\nmethod = BoxCoxTransformer()\n```\n\nFirstly you should fit the transformer, passing to it a feature matrix (X) and the target array (y).\nNOTE: y argument is really used only by the Target-Imputation.\n\n```python\nmethod.fit(X, y)\n```\n\nAfter you fit the model, you can use it for transforming new data, using the transform function. To transform function you should pass only the feature matrix (X).\n\n```python\nX_transformed = method.transform(X)\n```\n\nAlso you can fit and transform the data at the same time using the `fit_transform` function.\n\n```python\nX_transformed = method.fit_transform(X)\n```\n\nAlso you can apply a transformation directly on a pandas DataFrame, choosing the columns that you want to change.\n\n```python\nnew_df = method.apply(df, 'target', ['col1', 'col2']\n```\n\nSome advice:\n1. Use `FrequencyImputationTransformer` or `TargetImputationTransformer` for categorical features.\n2. Use `BoxCoxTransformer` or `YeoJohnsonTransformer` for numerical features to normalize a feature distribution.\n3. Use `SpatialSignTransformer` on normalized data to bring outliers to normal samples.\n4. Use `CombinatorTransformer` on tombine different transformers on categorical and numerical columns separately.\n\nWith <3 from Sigmoid!\n\nWe are open for feedback. Please send your impressions to vladimir.stojoc@gmail.com\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Imperio is a python sci-kit learn inspired package for feature engineering.",
    "version": "0.1.5",
    "split_keywords": [
        "ml",
        "machine learning",
        "feature engineering",
        "python",
        "data science"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e6527ead831c549633ab45574bde68d3da489aaf8ad253f53d462281b7c5e50d",
                "md5": "53c003ab9289e4b4d5a003d6fbc0248b",
                "sha256": "3377a04d1e826fd0356564c3a6afc2fe79e0655e4e269ea29ca61e77cea7ac55"
            },
            "downloads": -1,
            "filename": "imperio-0.1.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "53c003ab9289e4b4d5a003d6fbc0248b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 24189,
            "upload_time": "2023-02-05T15:13:19",
            "upload_time_iso_8601": "2023-02-05T15:13:19.286665Z",
            "url": "https://files.pythonhosted.org/packages/e6/52/7ead831c549633ab45574bde68d3da489aaf8ad253f53d462281b7c5e50d/imperio-0.1.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "44c7c6222d0ed638e9ca0a111fe1d23fc2325c922dc8cd8b93acc98ab99ee12a",
                "md5": "7d6c5d92476e32610121f53a8ce5c25d",
                "sha256": "93a0686de50e1a1ff3fe25be66c18c40fbac56f41e17cc044e7b7398ba67e683"
            },
            "downloads": -1,
            "filename": "imperio-0.1.5.tar.gz",
            "has_sig": false,
            "md5_digest": "7d6c5d92476e32610121f53a8ce5c25d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 12968,
            "upload_time": "2023-02-05T15:13:21",
            "upload_time_iso_8601": "2023-02-05T15:13:21.281275Z",
            "url": "https://files.pythonhosted.org/packages/44/c7/c6222d0ed638e9ca0a111fe1d23fc2325c922dc8cd8b93acc98ab99ee12a/imperio-0.1.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-02-05 15:13:21",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "SigmoidAI",
    "github_project": "imperio",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "imperio"
}
        
Elapsed time: 0.04550s