infrabed


Nameinfrabed JSON
Version 0.0.6 PyPI version JSON
download
home_page
SummaryPython library designed to simplify client-side interaction with deep learning models that perform embedding calculations.
upload_time2023-04-23 12:34:27
maintainer
docs_urlNone
authorDepDiko
requires_python
license
keywords python embedding deep learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            With this library, users can easily interface with APIs that provide embedding services, allowing them to quickly generate high-quality embeddings for a wide range of natural language processing (NLP) tasks. Whether you need to perform sentiment analysis, semantic similarity matching, or any other task that requires the use of embeddings, Embedding Client makes it easy to access the power of deep learning models from within your Python environment.

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "infrabed",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "python,embedding,deep learning",
    "author": "DepDiko",
    "author_email": "<yamen.habib@depdiko.com>",
    "download_url": "https://files.pythonhosted.org/packages/8e/89/42b4536134d88df0f63bacb97701c63b4a3121ca7d747e39d289b05b11a4/infrabed-0.0.6.tar.gz",
    "platform": null,
    "description": "With this library, users can easily interface with APIs that provide embedding services, allowing them to quickly generate high-quality embeddings for a wide range of natural language processing (NLP) tasks. Whether you need to perform sentiment analysis, semantic similarity matching, or any other task that requires the use of embeddings, Embedding Client makes it easy to access the power of deep learning models from within your Python environment.\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Python library designed to simplify client-side interaction with deep learning models that perform embedding calculations.",
    "version": "0.0.6",
    "split_keywords": [
        "python",
        "embedding",
        "deep learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5f0347ba015a33ca4af9fbf3e8633f7069231eba6a8ddb7c41d2fa411f366254",
                "md5": "0c0e88c49552b2c0f36ffa0cf92f1073",
                "sha256": "e9ea5c7cac591eda9232c4ee4b69fdc740c0e42c08f936a4a96c0bc6c7ddf267"
            },
            "downloads": -1,
            "filename": "infrabed-0.0.6-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "0c0e88c49552b2c0f36ffa0cf92f1073",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 6334,
            "upload_time": "2023-04-23T12:34:25",
            "upload_time_iso_8601": "2023-04-23T12:34:25.390480Z",
            "url": "https://files.pythonhosted.org/packages/5f/03/47ba015a33ca4af9fbf3e8633f7069231eba6a8ddb7c41d2fa411f366254/infrabed-0.0.6-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8e8942b4536134d88df0f63bacb97701c63b4a3121ca7d747e39d289b05b11a4",
                "md5": "083eb65889326c4a32e98051e651f9c2",
                "sha256": "ff62a609dad6d3afaf41f4792c88ff3706aa3832853789c347d88e381a2d9274"
            },
            "downloads": -1,
            "filename": "infrabed-0.0.6.tar.gz",
            "has_sig": false,
            "md5_digest": "083eb65889326c4a32e98051e651f9c2",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 6009,
            "upload_time": "2023-04-23T12:34:27",
            "upload_time_iso_8601": "2023-04-23T12:34:27.957154Z",
            "url": "https://files.pythonhosted.org/packages/8e/89/42b4536134d88df0f63bacb97701c63b4a3121ca7d747e39d289b05b11a4/infrabed-0.0.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-04-23 12:34:27",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "infrabed"
}
        
Elapsed time: 0.06723s