Name | infrabed JSON |
Version |
0.0.6
JSON |
| download |
home_page | |
Summary | Python library designed to simplify client-side interaction with deep learning models that perform embedding calculations. |
upload_time | 2023-04-23 12:34:27 |
maintainer | |
docs_url | None |
author | DepDiko |
requires_python | |
license | |
keywords |
python
embedding
deep learning
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
With this library, users can easily interface with APIs that provide embedding services, allowing them to quickly generate high-quality embeddings for a wide range of natural language processing (NLP) tasks. Whether you need to perform sentiment analysis, semantic similarity matching, or any other task that requires the use of embeddings, Embedding Client makes it easy to access the power of deep learning models from within your Python environment.
Raw data
{
"_id": null,
"home_page": "",
"name": "infrabed",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "python,embedding,deep learning",
"author": "DepDiko",
"author_email": "<yamen.habib@depdiko.com>",
"download_url": "https://files.pythonhosted.org/packages/8e/89/42b4536134d88df0f63bacb97701c63b4a3121ca7d747e39d289b05b11a4/infrabed-0.0.6.tar.gz",
"platform": null,
"description": "With this library, users can easily interface with APIs that provide embedding services, allowing them to quickly generate high-quality embeddings for a wide range of natural language processing (NLP) tasks. Whether you need to perform sentiment analysis, semantic similarity matching, or any other task that requires the use of embeddings, Embedding Client makes it easy to access the power of deep learning models from within your Python environment.\n",
"bugtrack_url": null,
"license": "",
"summary": "Python library designed to simplify client-side interaction with deep learning models that perform embedding calculations.",
"version": "0.0.6",
"split_keywords": [
"python",
"embedding",
"deep learning"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "5f0347ba015a33ca4af9fbf3e8633f7069231eba6a8ddb7c41d2fa411f366254",
"md5": "0c0e88c49552b2c0f36ffa0cf92f1073",
"sha256": "e9ea5c7cac591eda9232c4ee4b69fdc740c0e42c08f936a4a96c0bc6c7ddf267"
},
"downloads": -1,
"filename": "infrabed-0.0.6-py3-none-any.whl",
"has_sig": false,
"md5_digest": "0c0e88c49552b2c0f36ffa0cf92f1073",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 6334,
"upload_time": "2023-04-23T12:34:25",
"upload_time_iso_8601": "2023-04-23T12:34:25.390480Z",
"url": "https://files.pythonhosted.org/packages/5f/03/47ba015a33ca4af9fbf3e8633f7069231eba6a8ddb7c41d2fa411f366254/infrabed-0.0.6-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "8e8942b4536134d88df0f63bacb97701c63b4a3121ca7d747e39d289b05b11a4",
"md5": "083eb65889326c4a32e98051e651f9c2",
"sha256": "ff62a609dad6d3afaf41f4792c88ff3706aa3832853789c347d88e381a2d9274"
},
"downloads": -1,
"filename": "infrabed-0.0.6.tar.gz",
"has_sig": false,
"md5_digest": "083eb65889326c4a32e98051e651f9c2",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 6009,
"upload_time": "2023-04-23T12:34:27",
"upload_time_iso_8601": "2023-04-23T12:34:27.957154Z",
"url": "https://files.pythonhosted.org/packages/8e/89/42b4536134d88df0f63bacb97701c63b4a3121ca7d747e39d289b05b11a4/infrabed-0.0.6.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-04-23 12:34:27",
"github": false,
"gitlab": false,
"bitbucket": false,
"lcname": "infrabed"
}