insolver


Nameinsolver JSON
Version 0.4.29 PyPI version JSON
download
home_pagehttp://insolver.io/
SummaryInsolver is low-code machine learning library, initially created for the insurance industry.
upload_time2024-10-03 10:40:14
maintainerNone
docs_urlNone
authorMindset Team
requires_python<3.12,>=3.8
licenseMIT
keywords insurance machine learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Insolver
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/insolver)
[![PyPI](https://img.shields.io/pypi/v/insolver?style=flat)](https://pypi.org/project/insolver/)
[![Documentation Status](https://readthedocs.org/projects/insolver/badge/?version=latest)](https://insolver.readthedocs.io/en/latest/?badge=latest)
[![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/MindSetLib/Insolver/insolver-tests.yaml)](https://github.com/MindSetLib/Insolver/actions)
[![Coverage](https://codecov.io/github/MindSetLib/Insolver/coverage.svg?branch=master)](https://codecov.io/github/MindSetLib/Insolver)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![Downloads](https://pepy.tech/badge/insolver/week)](https://pepy.tech/project/insolver)

Insolver is a low-code machine learning library, originally created for the insurance industry, but can be used in any other. You can find a more detailed overview [here](https://insolver.readthedocs.io/en/latest/source/overview.html).

## Installation:

Insolver can be installed via pip from PyPI. There are several installation options available:

| Description                                        | Command                                     |
|----------------------------------------------------|---------------------------------------------|
| Regular installation                               | `pip install insolver`                      |
| Installation with feature engineering requirements | `pip install insolver[feature_engineering]` |
| Installation with feature monitoring requirements  | `pip install insolver[feature_monitoring]`  |
| Installation with interpretation requirements      | `pip install insolver[interpretation]`      |
| Installation with serving requirements             | `pip install insolver[serving]`             |
| Installation with report requirements              | `pip install insolver[report]`              |
| Installation with all requirements                 | `pip install insolver[all]`                 |



### Insolver is already installed in the easy access cloud via the GitHub login. Try https://mset.space with a familiar notebook-style environment.

## Examples:

- [Binary Classification Example - Rain in Australia Prediction](https://github.com/MindSetLib/Insolver/blob/master/tutorials/Binary%20Classification%20Example%20-%20Rain%20in%20Australia%20Prediction.ipynb)
This tutorial demonstrates how to create **classification models** for the [`weatherAUS`](https://www.kaggle.com/jsphyg/weather-dataset-rattle-package) dataset: getting and preprocessing data, transformations, creating models, plotting SHAP values and comparing models.

- [Data Preprocessing Example I - New York City Airbnb](https://github.com/MindSetLib/Insolver/blob/master/tutorials/Data%20Preprocessing%20Example%20I%20-%20New%20York%20City%20Airbnb.ipynb)
This tutorial demonstrates how to use the [`feature_engineering`](https://github.com/MindSetLib/Insolver/tree/master/insolver/feature_engineering) module and all the **main features of each class**. For this, the [`AB_NYC_2019`](https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data) dataset is used.

- [Data Preprocessing Example II - New York City Airbnb](https://github.com/MindSetLib/Insolver/blob/master/tutorials/Data%20Preprocessing%20Example%20II%20-%20New%20York%20City%20Airbnb.ipynb)
This tutorial also demonstrates how to use the [`feature_engineering`](https://github.com/MindSetLib/Insolver/tree/master/insolver/feature_engineering) module, but it covers the **automated data preprossesing** class and all of its features. For this, the [`AB_NYC_2019`](https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data) dataset is used.

- [Gradient Boosting Example - Lending Club](https://github.com/MindSetLib/Insolver/blob/master/tutorials/Gradient%20Boosting%20Example%20-%20Lending%20Club.ipynb)
This tutorial demonstrates how to create **classification models** for the [`Lending Club`](https://www.kaggle.com/wordsforthewise/lending-club) dataset using the **Gradient Boosting libraries** and the `InsolverGBMWrapper` class.

- [Transforms Inference Example](https://github.com/MindSetLib/Insolver/blob/master/tutorials/Transforms%20Inference%20Example.ipynb)
This tutorial demonstrates how to load `InsolverTransform` transforms from a file using the `load_transforms` function.

- [InsolverDataFrame and InsolverTransform Example](https://github.com/MindSetLib/Insolver/blob/master/tutorials/InsolverDataFrame%20and%20InsolverTransform%20Example.ipynb)
This tutorial demonstrates main features of the `InsolverDataFrame` class and the `InsolverTransform` class.

- [Regression Example - FreeMLP](https://github.com/MindSetLib/Insolver/blob/master/tutorials/Regression%20Example%20-%20FreeMLP.ipynb)
This tutorial demonstrates how to create **regression models** for the `freMPL-R` dataset: getting and preprocessing data, transformations, creating models, plotting SHAP values and comparing models.

- [Regression Example - US Accidents](https://github.com/MindSetLib/Insolver/blob/master/tutorials/Regression%20Example%20-%20FreeMLP.ipynb)
This tutorial demonstrates how to create **regression models** for the [`US Traffic Accident`](https://smoosavi.org/datasets/us_accidents) dataset: getting and preprocessing data, transformations, creating models, plotting SHAP values and comparing models.

- [Report Example](https://github.com/MindSetLib/Insolver/blob/master/tutorials/Report%20Example.ipynb)
This tutorial demonstrates how to create a **HTML report** with different models using the `Report` class.

## Documentation:

Available [here](https://insolver.readthedocs.io/)

## Supported libraries:

| GLM                 | Boosting models                           | Serving (REST-API)                 | Model interpretation |
|---------------------|-------------------------------------------|------------------------------------|----------------------|
| - sklearn<br/>- h2o | - XGBoost<br/> - LightGBM<br/> - CatBoost | - Flask<br/>- FastAPI<br/>- Django | - shap plots         |

### Run tests:
```shell
python -m pytest
```

tests with coverage:
```shell
python -m pytest . --cov=insolver --cov-report html
```


## Contributing to Insolver:

Please, feel free to open an issue or/and suggest PR, if you find any bugs or any enhancements.

## Demo
### Example of creating models using the Insolver
![](https://github.com/MindSetLib/Insolver/releases/download/v0.4.6/InsolverDemo.gif)

### Example of a model production service
![](https://github.com/MindSetLib/Insolver/releases/download/v0.4.6/InsolverImplementation.gif)

### Example of an elyra pipeline built with the Insolver inside
![](https://github.com/MindSetLib/Insolver/releases/download/v0.4.6/InsolverElyraPipeline.gif)

## Contacts
frank@mind-set.ru
+79263790123


            

Raw data

            {
    "_id": null,
    "home_page": "http://insolver.io/",
    "name": "insolver",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.12,>=3.8",
    "maintainer_email": null,
    "keywords": "insurance, machine learning",
    "author": "Mindset Team",
    "author_email": "request@mind-set.ru",
    "download_url": "https://files.pythonhosted.org/packages/e8/8d/477397cd210520fafc3e6d4e489d3cae6a0739e54dd3ad17c4b81ff85166/insolver-0.4.29.tar.gz",
    "platform": null,
    "description": "# Insolver\n![PyPI - Python Version](https://img.shields.io/pypi/pyversions/insolver)\n[![PyPI](https://img.shields.io/pypi/v/insolver?style=flat)](https://pypi.org/project/insolver/)\n[![Documentation Status](https://readthedocs.org/projects/insolver/badge/?version=latest)](https://insolver.readthedocs.io/en/latest/?badge=latest)\n[![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/MindSetLib/Insolver/insolver-tests.yaml)](https://github.com/MindSetLib/Insolver/actions)\n[![Coverage](https://codecov.io/github/MindSetLib/Insolver/coverage.svg?branch=master)](https://codecov.io/github/MindSetLib/Insolver)\n[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\n[![Downloads](https://pepy.tech/badge/insolver/week)](https://pepy.tech/project/insolver)\n\nInsolver is a low-code machine learning library, originally created for the insurance industry, but can be used in any other. You can find a more detailed overview [here](https://insolver.readthedocs.io/en/latest/source/overview.html).\n\n## Installation:\n\nInsolver can be installed via pip from PyPI. There are several installation options available:\n\n| Description                                        | Command                                     |\n|----------------------------------------------------|---------------------------------------------|\n| Regular installation                               | `pip install insolver`                      |\n| Installation with feature engineering requirements | `pip install insolver[feature_engineering]` |\n| Installation with feature monitoring requirements  | `pip install insolver[feature_monitoring]`  |\n| Installation with interpretation requirements      | `pip install insolver[interpretation]`      |\n| Installation with serving requirements             | `pip install insolver[serving]`             |\n| Installation with report requirements              | `pip install insolver[report]`              |\n| Installation with all requirements                 | `pip install insolver[all]`                 |\n\n\n\n### Insolver is already installed in the easy access cloud via the GitHub login. Try https://mset.space with a familiar notebook-style environment.\n\n## Examples:\n\n- [Binary Classification Example - Rain in Australia Prediction](https://github.com/MindSetLib/Insolver/blob/master/tutorials/Binary%20Classification%20Example%20-%20Rain%20in%20Australia%20Prediction.ipynb)\nThis tutorial demonstrates how to create **classification models** for the [`weatherAUS`](https://www.kaggle.com/jsphyg/weather-dataset-rattle-package) dataset: getting and preprocessing data, transformations, creating models, plotting SHAP values and comparing models.\n\n- [Data Preprocessing Example I - New York City Airbnb](https://github.com/MindSetLib/Insolver/blob/master/tutorials/Data%20Preprocessing%20Example%20I%20-%20New%20York%20City%20Airbnb.ipynb)\nThis tutorial demonstrates how to use the [`feature_engineering`](https://github.com/MindSetLib/Insolver/tree/master/insolver/feature_engineering) module and all the **main features of each class**. For this, the [`AB_NYC_2019`](https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data) dataset is used.\n\n- [Data Preprocessing Example II - New York City Airbnb](https://github.com/MindSetLib/Insolver/blob/master/tutorials/Data%20Preprocessing%20Example%20II%20-%20New%20York%20City%20Airbnb.ipynb)\nThis tutorial also demonstrates how to use the [`feature_engineering`](https://github.com/MindSetLib/Insolver/tree/master/insolver/feature_engineering) module, but it covers the **automated data preprossesing** class and all of its features. For this, the [`AB_NYC_2019`](https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data) dataset is used.\n\n- [Gradient Boosting Example - Lending Club](https://github.com/MindSetLib/Insolver/blob/master/tutorials/Gradient%20Boosting%20Example%20-%20Lending%20Club.ipynb)\nThis tutorial demonstrates how to create **classification models** for the [`Lending Club`](https://www.kaggle.com/wordsforthewise/lending-club) dataset using the **Gradient Boosting libraries** and the `InsolverGBMWrapper` class.\n\n- [Transforms Inference Example](https://github.com/MindSetLib/Insolver/blob/master/tutorials/Transforms%20Inference%20Example.ipynb)\nThis tutorial demonstrates how to load `InsolverTransform` transforms from a file using the `load_transforms` function.\n\n- [InsolverDataFrame and InsolverTransform Example](https://github.com/MindSetLib/Insolver/blob/master/tutorials/InsolverDataFrame%20and%20InsolverTransform%20Example.ipynb)\nThis tutorial demonstrates main features of the `InsolverDataFrame` class and the `InsolverTransform` class.\n\n- [Regression Example - FreeMLP](https://github.com/MindSetLib/Insolver/blob/master/tutorials/Regression%20Example%20-%20FreeMLP.ipynb)\nThis tutorial demonstrates how to create **regression models** for the `freMPL-R` dataset: getting and preprocessing data, transformations, creating models, plotting SHAP values and comparing models.\n\n- [Regression Example - US Accidents](https://github.com/MindSetLib/Insolver/blob/master/tutorials/Regression%20Example%20-%20FreeMLP.ipynb)\nThis tutorial demonstrates how to create **regression models** for the [`US Traffic Accident`](https://smoosavi.org/datasets/us_accidents) dataset: getting and preprocessing data, transformations, creating models, plotting SHAP values and comparing models.\n\n- [Report Example](https://github.com/MindSetLib/Insolver/blob/master/tutorials/Report%20Example.ipynb)\nThis tutorial demonstrates how to create a **HTML report** with different models using the `Report` class.\n\n## Documentation:\n\nAvailable [here](https://insolver.readthedocs.io/)\n\n## Supported libraries:\n\n| GLM                 | Boosting models                           | Serving (REST-API)                 | Model interpretation |\n|---------------------|-------------------------------------------|------------------------------------|----------------------|\n| - sklearn<br/>- h2o | - XGBoost<br/> - LightGBM<br/> - CatBoost | - Flask<br/>- FastAPI<br/>- Django | - shap plots         |\n\n### Run tests:\n```shell\npython -m pytest\n```\n\ntests with coverage:\n```shell\npython -m pytest . --cov=insolver --cov-report html\n```\n\n\n## Contributing to Insolver:\n\nPlease, feel free to open an issue or/and suggest PR, if you find any bugs or any enhancements.\n\n## Demo\n### Example of creating models using the Insolver\n![](https://github.com/MindSetLib/Insolver/releases/download/v0.4.6/InsolverDemo.gif)\n\n### Example of a model production service\n![](https://github.com/MindSetLib/Insolver/releases/download/v0.4.6/InsolverImplementation.gif)\n\n### Example of an elyra pipeline built with the Insolver inside\n![](https://github.com/MindSetLib/Insolver/releases/download/v0.4.6/InsolverElyraPipeline.gif)\n\n## Contacts\nfrank@mind-set.ru\n+79263790123\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Insolver is low-code machine learning library, initially created for the insurance industry.",
    "version": "0.4.29",
    "project_urls": {
        "Bug Tracker": "https://github.com/MindSetLib/Insolver/issues",
        "Documentation": "https://insolver.readthedocs.io/en/stable/",
        "Homepage": "http://insolver.io/",
        "Repository": "https://github.com/MindSetLib/Insolver"
    },
    "split_keywords": [
        "insurance",
        " machine learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "258ddc5dfb607a3e40e661b699cc113a6b94d44261203bd7ca78806f694ac740",
                "md5": "99807bf7e7222401b44dd60b70481add",
                "sha256": "d91c2a1308ed38db66d7ab5d54a7f3545e933ef838e7c120a9eadb19ab3a9623"
            },
            "downloads": -1,
            "filename": "insolver-0.4.29-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "99807bf7e7222401b44dd60b70481add",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.12,>=3.8",
            "size": 487760,
            "upload_time": "2024-10-03T10:40:12",
            "upload_time_iso_8601": "2024-10-03T10:40:12.982618Z",
            "url": "https://files.pythonhosted.org/packages/25/8d/dc5dfb607a3e40e661b699cc113a6b94d44261203bd7ca78806f694ac740/insolver-0.4.29-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e88d477397cd210520fafc3e6d4e489d3cae6a0739e54dd3ad17c4b81ff85166",
                "md5": "d5daf0632df77a0dd52589af6fb333e1",
                "sha256": "5652b9edb6a2e9f3b0855a7e12540491f94d6d914d0db5c755cac24c5b02edc0"
            },
            "downloads": -1,
            "filename": "insolver-0.4.29.tar.gz",
            "has_sig": false,
            "md5_digest": "d5daf0632df77a0dd52589af6fb333e1",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.12,>=3.8",
            "size": 442689,
            "upload_time": "2024-10-03T10:40:14",
            "upload_time_iso_8601": "2024-10-03T10:40:14.881105Z",
            "url": "https://files.pythonhosted.org/packages/e8/8d/477397cd210520fafc3e6d4e489d3cae6a0739e54dd3ad17c4b81ff85166/insolver-0.4.29.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-03 10:40:14",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "MindSetLib",
    "github_project": "Insolver",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "insolver"
}
        
Elapsed time: 0.32064s