Name | inspyred JSON |
Version |
1.0.2
JSON |
| download |
home_page | https://github.com/aarongarrett/inspyred |
Summary | A framework for creating bio-inspired computational intelligence algorithms in Python |
upload_time | 2023-11-02 16:34:10 |
maintainer | |
docs_url | https://pythonhosted.org/inspyred/ |
author | Aaron Garrett |
requires_python | |
license | MIT |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
======================================================================================================
``inspyred`` -- A framework for creating bio-inspired computational intelligence algorithms in Python.
======================================================================================================
.. image:: https://img.shields.io/pypi/v/inspyred.svg
:target: https://pypi.python.org/pypi/inspyred
:alt: PyPi
.. image:: https://github.com/aarongarrett/inspyred/actions/workflows/ci.yml/badge.svg
:target: https://github.com/aarongarrett/inspyred/actions/workflows/ci.yml
:alt: GitHub Actions
.. image:: https://readthedocs.org/projects/inspyred/badge/?version=latest
:target: https://inspyred.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status
.. image:: https://img.shields.io/github/issues-pr/aarongarrett/inspyred
:target: https://github.com/aarongarrett/inspyred/pulls
:alt: PRs
.. image:: https://img.shields.io/github/issues/aarongarrett/inspyred
:target: https://github.com/aarongarrett/inspyred/issues
:alt: Issues
inspyred is a free, open source framework for creating biologically-inspired
computational intelligence algorithms in Python, including evolutionary
computation, swarm intelligence, and immunocomputing. Additionally, inspyred
provides easy-to-use canonical versions of many bio-inspired algorithms for
users who do not need much customization.
Example
-------
The following example illustrates the basics of the inspyred package. In this
example, candidate solutions are 10-bit binary strings whose decimal values
should be maximized::
import random
import time
import inspyred
def generate_binary(random, args):
bits = args.get('num_bits', 8)
return [random.choice([0, 1]) for i in range(bits)]
@inspyred.ec.evaluators.evaluator
def evaluate_binary(candidate, args):
return int("".join([str(c) for c in candidate]), 2)
rand = random.Random()
rand.seed(int(time.time()))
ga = inspyred.ec.GA(rand)
ga.observer = inspyred.ec.observers.stats_observer
ga.terminator = inspyred.ec.terminators.evaluation_termination
final_pop = ga.evolve(evaluator=evaluate_binary,
generator=generate_binary,
max_evaluations=1000,
num_elites=1,
pop_size=100,
num_bits=10)
final_pop.sort(reverse=True)
for ind in final_pop:
print(str(ind))
Requirements
------------
* Requires Python 3+.
* Numpy and Pylab are required for several functions in ``ec.observers``.
* Pylab and Matplotlib are required for several functions in ``ec.analysis``.
* Parallel Python (pp) is required if ``ec.evaluators.parallel_evaluation_pp`` is used.
License
-------
This package is distributed under the MIT License. This license can be found
online at http://www.opensource.org/licenses/MIT.
Resources
---------
* Homepage: http://aarongarrett.github.io/inspyred
* Email: garrett@inspiredintelligence.io
* Documentation: https://inspyred.readthedocs.io.
Citing
------
Garrett, A. (2012). inspyred (Version 1.0.1) [software]. Inspired Intelligence. Retrieved from https://github.com/aarongarrett/inspyred [accessed CURRENT DATE].
Features
--------
* TODO
Credits
---------
This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.
.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage
Raw data
{
"_id": null,
"home_page": "https://github.com/aarongarrett/inspyred",
"name": "inspyred",
"maintainer": "",
"docs_url": "https://pythonhosted.org/inspyred/",
"requires_python": "",
"maintainer_email": "",
"keywords": "",
"author": "Aaron Garrett",
"author_email": "garrett@inspiredintelligence.io",
"download_url": "https://files.pythonhosted.org/packages/f6/ac/d5e154416e1290e050adb2cc995d5cc038db1749c5cb2601d96b6d7f5c92/inspyred-1.0.2.tar.gz",
"platform": null,
"description": "======================================================================================================\n``inspyred`` -- A framework for creating bio-inspired computational intelligence algorithms in Python.\n======================================================================================================\n\n\n.. image:: https://img.shields.io/pypi/v/inspyred.svg\n :target: https://pypi.python.org/pypi/inspyred\n :alt: PyPi\n\n.. image:: https://github.com/aarongarrett/inspyred/actions/workflows/ci.yml/badge.svg\n :target: https://github.com/aarongarrett/inspyred/actions/workflows/ci.yml\n :alt: GitHub Actions\n\n.. image:: https://readthedocs.org/projects/inspyred/badge/?version=latest\n :target: https://inspyred.readthedocs.io/en/latest/?badge=latest\n :alt: Documentation Status\n\n.. image:: https://img.shields.io/github/issues-pr/aarongarrett/inspyred\n :target: https://github.com/aarongarrett/inspyred/pulls\n :alt: PRs\n\n.. image:: https://img.shields.io/github/issues/aarongarrett/inspyred\n :target: https://github.com/aarongarrett/inspyred/issues\n :alt: Issues\n\n\ninspyred is a free, open source framework for creating biologically-inspired\ncomputational intelligence algorithms in Python, including evolutionary\ncomputation, swarm intelligence, and immunocomputing. Additionally, inspyred\nprovides easy-to-use canonical versions of many bio-inspired algorithms for\nusers who do not need much customization.\n\n\nExample\n-------\n\nThe following example illustrates the basics of the inspyred package. In this\nexample, candidate solutions are 10-bit binary strings whose decimal values\nshould be maximized::\n\n import random\n import time\n import inspyred\n\n def generate_binary(random, args):\n bits = args.get('num_bits', 8)\n return [random.choice([0, 1]) for i in range(bits)]\n\n @inspyred.ec.evaluators.evaluator\n def evaluate_binary(candidate, args):\n return int(\"\".join([str(c) for c in candidate]), 2)\n\n rand = random.Random()\n rand.seed(int(time.time()))\n ga = inspyred.ec.GA(rand)\n ga.observer = inspyred.ec.observers.stats_observer\n ga.terminator = inspyred.ec.terminators.evaluation_termination\n final_pop = ga.evolve(evaluator=evaluate_binary,\n generator=generate_binary,\n max_evaluations=1000,\n num_elites=1,\n pop_size=100,\n num_bits=10)\n final_pop.sort(reverse=True)\n for ind in final_pop:\n print(str(ind))\n\n\nRequirements\n------------\n\n * Requires Python 3+.\n * Numpy and Pylab are required for several functions in ``ec.observers``.\n * Pylab and Matplotlib are required for several functions in ``ec.analysis``.\n * Parallel Python (pp) is required if ``ec.evaluators.parallel_evaluation_pp`` is used.\n\n\nLicense\n-------\n\nThis package is distributed under the MIT License. This license can be found\nonline at http://www.opensource.org/licenses/MIT.\n\n\nResources\n---------\n\n * Homepage: http://aarongarrett.github.io/inspyred\n * Email: garrett@inspiredintelligence.io\n * Documentation: https://inspyred.readthedocs.io.\n\nCiting\n------\nGarrett, A. (2012). inspyred (Version 1.0.1) [software]. Inspired Intelligence. Retrieved from https://github.com/aarongarrett/inspyred [accessed CURRENT DATE].\n\nFeatures\n--------\n\n* TODO\n\nCredits\n---------\n\nThis package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.\n\n.. _Cookiecutter: https://github.com/audreyr/cookiecutter\n.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A framework for creating bio-inspired computational intelligence algorithms in Python",
"version": "1.0.2",
"project_urls": {
"Homepage": "https://github.com/aarongarrett/inspyred"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "3695611721e56bf1e7c4c248bb0b59c5035663e64331196cf2c2bcb5350682a9",
"md5": "2a8c474d243fbd4f403e8afdc61f8578",
"sha256": "6df4fa5c3e9ff467981f3e98e253fa04ca161d92e70cdc15075e27e6439438f2"
},
"downloads": -1,
"filename": "inspyred-1.0.2-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "2a8c474d243fbd4f403e8afdc61f8578",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": null,
"size": 74438,
"upload_time": "2023-11-02T16:34:08",
"upload_time_iso_8601": "2023-11-02T16:34:08.225361Z",
"url": "https://files.pythonhosted.org/packages/36/95/611721e56bf1e7c4c248bb0b59c5035663e64331196cf2c2bcb5350682a9/inspyred-1.0.2-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f6acd5e154416e1290e050adb2cc995d5cc038db1749c5cb2601d96b6d7f5c92",
"md5": "effb9566d37ed4ec6aa7b6e495f3b5ac",
"sha256": "4a8437e1818b8be5e2c7964ce6dc4df9678389e8caeb597b6f07083eb1aeae1e"
},
"downloads": -1,
"filename": "inspyred-1.0.2.tar.gz",
"has_sig": false,
"md5_digest": "effb9566d37ed4ec6aa7b6e495f3b5ac",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 4416262,
"upload_time": "2023-11-02T16:34:10",
"upload_time_iso_8601": "2023-11-02T16:34:10.984163Z",
"url": "https://files.pythonhosted.org/packages/f6/ac/d5e154416e1290e050adb2cc995d5cc038db1749c5cb2601d96b6d7f5c92/inspyred-1.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-11-02 16:34:10",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "aarongarrett",
"github_project": "inspyred",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"tox": true,
"lcname": "inspyred"
}