insuranceqa-corpus-zh
=====================
保险行业语料库
Welcome
-------
该语料库包含从网站\ `Insurance
Library <http://www.insurancelibrary.com/>`__ 收集的问题和答案。
据我们所知,这是保险领域首个开放的QA语料库:
- 该语料库的内容由现实世界的用户提出,高质量的答案由具有深度领域知识的专业人士提供。
所以这是一个具有真正价值的语料,而不是玩具。
- 在上述论文中,语料库用于答复选择任务。
另一方面,这种语料库的其他用法也是可能的。
例如,通过阅读理解答案,观察学习等自主学习,使系统能够最终拿出自己的看不见的问题的答案。
欢迎任何进一步增加此数据集的想法。
阅读 `详细文档 <https://github.com/chatopera/insuranceqa-corpus-zh>`__
声明
----
声明1 :
`insuranceqa-corpus-zh <https://github.com/chatopera/insuranceqa-corpus-zh>`__
本数据集使用翻译
`insuranceQA <https://github.com/shuzi/insuranceQA>`__\ 而生成,代码发布证书
`Chunsong Public License, version 1.0<https://docs.cskefu.com/licenses/v1.html>`。数据仅限于研究用途,如果在发布的任何媒体、期刊、杂志或博客等内容时,必须注明引用和地址。
::
InsuranceQA Corpus, Hai Liang Wang, https://github.com/chatopera/insuranceqa-corpus-zh, 07 27, 2017
任何基于\ `insuranceqa-corpus <https://github.com/chatopera/insuranceqa-corpus-zh>`__\ 衍生的数据也需要开放并需要声明和“声明1”和“声明2”一致的内容。
声明2 : `insuranceQA <https://github.com/shuzi/insuranceQA>`__
此数据集仅作为研究目的提供。如果您使用这些数据发表任何内容,请引用我们的论文:\ `Applying
Deep Learning to Answer Selection: A Study and An Open
Task <https://arxiv.org/abs/1508.01585>`__\ 。Minwei Feng, Bing Xiang,
Michael R. Glass, Lidan Wang, Bowen Zhou @ 2015
Raw data
{
"_id": null,
"home_page": "https://github.com/chatopera/insuranceqa-corpus-zh",
"name": "insuranceqa_data",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "corpus",
"author": "Hai Liang Wang",
"author_email": "hailiang.hl.wang@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/d0/f3/ff1760609a5dc2c7d92e1fe4f4c285c11ee938144a93efe79236b0b9f54c/insuranceqa_data-2.5.2.tar.gz",
"platform": null,
"description": "\ninsuranceqa-corpus-zh\n=====================\n\n\u4fdd\u9669\u884c\u4e1a\u8bed\u6599\u5e93\n\nWelcome\n-------\n\n\u8be5\u8bed\u6599\u5e93\u5305\u542b\u4ece\u7f51\u7ad9\\ `Insurance\nLibrary <http://www.insurancelibrary.com/>`__ \u6536\u96c6\u7684\u95ee\u9898\u548c\u7b54\u6848\u3002\n\n\u636e\u6211\u4eec\u6240\u77e5\uff0c\u8fd9\u662f\u4fdd\u9669\u9886\u57df\u9996\u4e2a\u5f00\u653e\u7684QA\u8bed\u6599\u5e93\uff1a\n\n- \u8be5\u8bed\u6599\u5e93\u7684\u5185\u5bb9\u7531\u73b0\u5b9e\u4e16\u754c\u7684\u7528\u6237\u63d0\u51fa\uff0c\u9ad8\u8d28\u91cf\u7684\u7b54\u6848\u7531\u5177\u6709\u6df1\u5ea6\u9886\u57df\u77e5\u8bc6\u7684\u4e13\u4e1a\u4eba\u58eb\u63d0\u4f9b\u3002\n \u6240\u4ee5\u8fd9\u662f\u4e00\u4e2a\u5177\u6709\u771f\u6b63\u4ef7\u503c\u7684\u8bed\u6599\uff0c\u800c\u4e0d\u662f\u73a9\u5177\u3002\n\n- \u5728\u4e0a\u8ff0\u8bba\u6587\u4e2d\uff0c\u8bed\u6599\u5e93\u7528\u4e8e\u7b54\u590d\u9009\u62e9\u4efb\u52a1\u3002\n \u53e6\u4e00\u65b9\u9762\uff0c\u8fd9\u79cd\u8bed\u6599\u5e93\u7684\u5176\u4ed6\u7528\u6cd5\u4e5f\u662f\u53ef\u80fd\u7684\u3002\n \u4f8b\u5982\uff0c\u901a\u8fc7\u9605\u8bfb\u7406\u89e3\u7b54\u6848\uff0c\u89c2\u5bdf\u5b66\u4e60\u7b49\u81ea\u4e3b\u5b66\u4e60\uff0c\u4f7f\u7cfb\u7edf\u80fd\u591f\u6700\u7ec8\u62ff\u51fa\u81ea\u5df1\u7684\u770b\u4e0d\u89c1\u7684\u95ee\u9898\u7684\u7b54\u6848\u3002\n\n\u6b22\u8fce\u4efb\u4f55\u8fdb\u4e00\u6b65\u589e\u52a0\u6b64\u6570\u636e\u96c6\u7684\u60f3\u6cd5\u3002\n\n\u9605\u8bfb `\u8be6\u7ec6\u6587\u6863 <https://github.com/chatopera/insuranceqa-corpus-zh>`__\n\n\u58f0\u660e\n----\n\n\u58f0\u660e1 :\n`insuranceqa-corpus-zh <https://github.com/chatopera/insuranceqa-corpus-zh>`__\n\n\u672c\u6570\u636e\u96c6\u4f7f\u7528\u7ffb\u8bd1\n`insuranceQA <https://github.com/shuzi/insuranceQA>`__\\ \u800c\u751f\u6210\uff0c\u4ee3\u7801\u53d1\u5e03\u8bc1\u4e66\n`Chunsong Public License, version 1.0<https://docs.cskefu.com/licenses/v1.html>`\u3002\u6570\u636e\u4ec5\u9650\u4e8e\u7814\u7a76\u7528\u9014\uff0c\u5982\u679c\u5728\u53d1\u5e03\u7684\u4efb\u4f55\u5a92\u4f53\u3001\u671f\u520a\u3001\u6742\u5fd7\u6216\u535a\u5ba2\u7b49\u5185\u5bb9\u65f6\uff0c\u5fc5\u987b\u6ce8\u660e\u5f15\u7528\u548c\u5730\u5740\u3002\n\n::\n\n InsuranceQA Corpus, Hai Liang Wang, https://github.com/chatopera/insuranceqa-corpus-zh, 07 27, 2017\n\n\u4efb\u4f55\u57fa\u4e8e\\ `insuranceqa-corpus <https://github.com/chatopera/insuranceqa-corpus-zh>`__\\ \u884d\u751f\u7684\u6570\u636e\u4e5f\u9700\u8981\u5f00\u653e\u5e76\u9700\u8981\u58f0\u660e\u548c\u201c\u58f0\u660e1\u201d\u548c\u201c\u58f0\u660e2\u201d\u4e00\u81f4\u7684\u5185\u5bb9\u3002\n\n\u58f0\u660e2 : `insuranceQA <https://github.com/shuzi/insuranceQA>`__\n\n\u6b64\u6570\u636e\u96c6\u4ec5\u4f5c\u4e3a\u7814\u7a76\u76ee\u7684\u63d0\u4f9b\u3002\u5982\u679c\u60a8\u4f7f\u7528\u8fd9\u4e9b\u6570\u636e\u53d1\u8868\u4efb\u4f55\u5185\u5bb9\uff0c\u8bf7\u5f15\u7528\u6211\u4eec\u7684\u8bba\u6587\uff1a\\ `Applying\nDeep Learning to Answer Selection: A Study and An Open\nTask <https://arxiv.org/abs/1508.01585>`__\\ \u3002Minwei Feng, Bing Xiang,\nMichael R. Glass, Lidan Wang, Bowen Zhou @ 2015\n",
"bugtrack_url": null,
"license": "Chunsong Public License, version 1.0",
"summary": "Insuranceqa Corpus in Chinese for Machine Learning",
"version": "2.5.2",
"project_urls": {
"Homepage": "https://github.com/chatopera/insuranceqa-corpus-zh"
},
"split_keywords": [
"corpus"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "d0f3ff1760609a5dc2c7d92e1fe4f4c285c11ee938144a93efe79236b0b9f54c",
"md5": "22ce3bb528b9cbebf18fc08997cc5cdc",
"sha256": "b21ffbf664f7d2f62a62b45e13f7c3b5dbce50295b0449f9e3148f647cff28dd"
},
"downloads": -1,
"filename": "insuranceqa_data-2.5.2.tar.gz",
"has_sig": false,
"md5_digest": "22ce3bb528b9cbebf18fc08997cc5cdc",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 7640,
"upload_time": "2023-11-15T01:45:52",
"upload_time_iso_8601": "2023-11-15T01:45:52.707930Z",
"url": "https://files.pythonhosted.org/packages/d0/f3/ff1760609a5dc2c7d92e1fe4f4c285c11ee938144a93efe79236b0b9f54c/insuranceqa_data-2.5.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-11-15 01:45:52",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "chatopera",
"github_project": "insuranceqa-corpus-zh",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "insuranceqa_data"
}