intecomm-rando


Nameintecomm-rando JSON
Version 0.1.25 PyPI version JSON
download
home_pagehttps://github.com/intecomm-trial/intecomm-rando
SummaryINTECOMM EDC randomization
upload_time2024-04-11 00:28:21
maintainerNone
docs_urlNone
authorErik van Widenfelt
requires_python>=3.11
licenseGPL license, see LICENSE
keywords django edc intecomm edc randomization clinicedc clinical trials
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage
            |pypi| |actions| |codecov| |downloads|


intecomm-rando
--------------------
Randomization for INTECOMM_ trial

A dependency of the INTECOMM_ trial EDC.

The INTECOMM_ trial is a cluster randomized trial where the unit of randomization is the patient group.

At screening, data for individual potential participants are stored in the ``intecomm_screening.PatientLog`` model.
Eligible individual potential participants (model ``PatientLog``) are added to a patient group (model ``intecomm_group.PatientGroup``).

The data flow is PatientLog -> SubjectScreening -> if eligible -> SubjectConsent

Ideally, for a patient group to be considered for randomization, the group must contain
between 9-14 screened and consented members where a count of chronic conditions of those in the group meets an
approximate ratio of 2 : 1; that is, 2(DM/HTN) : 1(HIV). The site coordinators may override these values.

Once a PatientGroup is ready to randomize, the site staff open the ``PatientGroup`` form and click "randomize".

In the background, the ``Randomizer`` class calls its method ``randomize_group``.  ``randomize_group`` picks the next
available record from the randomization_list (''intecomm_rando.RandomizationList``) and inserts a unique ``group_identifier`` value.
A records is available if ``group_identifier`` has not been set. Ordering is ascending by ``sid``.

The PatientGroup is given its newly allocated ``group_identifier``. The subjects in this group may now be
followed longitudinally starting with visit 1000.

The ``group_identifier``, for subjects in a PatientGroup, is updated on the PatientLog record as well.

* The ``RegisteredGroup`` model holds the ``sid`` to ``group_identifier`` relationship
* The ``RandomizationList`` model holds the ``sid`` to ``assignment`` to ``group_identifier`` relationship
* ``PatientLog`` links group_identifier and subject_identifier

See also tables:
•	Intecomm_rando_registeredgroup
•	Intecomm_rando_randomizationlist
•	intecomm_screening_patientlog
•	intecomm_group_patientlog








.. |pypi| image:: https://img.shields.io/pypi/v/intecomm-rando.svg
    :target: https://pypi.python.org/pypi/intecomm-rando

.. |actions| image:: https://github.com/intecomm-trial/intecomm-rando/actions/workflows/build.yml/badge.svg
  :target: https://github.com/intecomm-trial/intecomm-rando/actions/workflows/build.yml

.. |codecov| image:: https://codecov.io/gh/intecomm-trial/intecomm-rando/branch/develop/graph/badge.svg
  :target: https://codecov.io/gh/intecomm-trial/intecomm-rando

.. |downloads| image:: https://pepy.tech/badge/intecomm-rando
   :target: https://pepy.tech/project/intecomm-rando

.. _INTECOMM: https://github.com/intecomm-trial/intecomm-edc

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/intecomm-trial/intecomm-rando",
    "name": "intecomm-rando",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.11",
    "maintainer_email": null,
    "keywords": "django edc INTECOMM EDC randomization, clinicedc, clinical trials",
    "author": "Erik van Widenfelt",
    "author_email": "ew2789@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/e0/9f/ca90a5d18d37a243c3fb32ebc29795b3766c18331e1d6192b78078e46665/intecomm-rando-0.1.25.tar.gz",
    "platform": null,
    "description": "|pypi| |actions| |codecov| |downloads|\n\n\nintecomm-rando\n--------------------\nRandomization for INTECOMM_ trial\n\nA dependency of the INTECOMM_ trial EDC.\n\nThe INTECOMM_ trial is a cluster randomized trial where the unit of randomization is the patient group.\n\nAt screening, data for individual potential participants are stored in the ``intecomm_screening.PatientLog`` model.\nEligible individual potential participants (model ``PatientLog``) are added to a patient group (model ``intecomm_group.PatientGroup``).\n\nThe data flow is PatientLog -> SubjectScreening -> if eligible -> SubjectConsent\n\nIdeally, for a patient group to be considered for randomization, the group must contain\nbetween 9-14 screened and consented members where a count of chronic conditions of those in the group meets an\napproximate ratio of 2 : 1; that is, 2(DM/HTN) : 1(HIV). The site coordinators may override these values.\n\nOnce a PatientGroup is ready to randomize, the site staff open the ``PatientGroup`` form and click \"randomize\".\n\nIn the background, the ``Randomizer`` class calls its method ``randomize_group``.  ``randomize_group`` picks the next\navailable record from the randomization_list (''intecomm_rando.RandomizationList``) and inserts a unique ``group_identifier`` value.\nA records is available if ``group_identifier`` has not been set. Ordering is ascending by ``sid``.\n\nThe PatientGroup is given its newly allocated ``group_identifier``. The subjects in this group may now be\nfollowed longitudinally starting with visit 1000.\n\nThe ``group_identifier``, for subjects in a PatientGroup, is updated on the PatientLog record as well.\n\n* The ``RegisteredGroup`` model holds the ``sid`` to ``group_identifier`` relationship\n* The ``RandomizationList`` model holds the ``sid`` to ``assignment`` to ``group_identifier`` relationship\n* ``PatientLog`` links group_identifier and subject_identifier\n\nSee also tables:\n\u2022\tIntecomm_rando_registeredgroup\n\u2022\tIntecomm_rando_randomizationlist\n\u2022\tintecomm_screening_patientlog\n\u2022\tintecomm_group_patientlog\n\n\n\n\n\n\n\n\n.. |pypi| image:: https://img.shields.io/pypi/v/intecomm-rando.svg\n    :target: https://pypi.python.org/pypi/intecomm-rando\n\n.. |actions| image:: https://github.com/intecomm-trial/intecomm-rando/actions/workflows/build.yml/badge.svg\n  :target: https://github.com/intecomm-trial/intecomm-rando/actions/workflows/build.yml\n\n.. |codecov| image:: https://codecov.io/gh/intecomm-trial/intecomm-rando/branch/develop/graph/badge.svg\n  :target: https://codecov.io/gh/intecomm-trial/intecomm-rando\n\n.. |downloads| image:: https://pepy.tech/badge/intecomm-rando\n   :target: https://pepy.tech/project/intecomm-rando\n\n.. _INTECOMM: https://github.com/intecomm-trial/intecomm-edc\n",
    "bugtrack_url": null,
    "license": "GPL license, see LICENSE",
    "summary": "INTECOMM EDC randomization",
    "version": "0.1.25",
    "project_urls": {
        "Homepage": "https://github.com/intecomm-trial/intecomm-rando"
    },
    "split_keywords": [
        "django edc intecomm edc randomization",
        " clinicedc",
        " clinical trials"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "83b71aacf6e5e63ded2aaf0fa0bd9e0c05186805a871c4cccc3fcf153fad1e52",
                "md5": "8ee2799e3aea5651aed5ddfea458dc52",
                "sha256": "0bc7d1a2fee3040b27f3f554ac3f4e0d9941842413cdfc73a9f0bebf49851382"
            },
            "downloads": -1,
            "filename": "intecomm_rando-0.1.25-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8ee2799e3aea5651aed5ddfea458dc52",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.11",
            "size": 39468,
            "upload_time": "2024-04-11T00:28:20",
            "upload_time_iso_8601": "2024-04-11T00:28:20.156842Z",
            "url": "https://files.pythonhosted.org/packages/83/b7/1aacf6e5e63ded2aaf0fa0bd9e0c05186805a871c4cccc3fcf153fad1e52/intecomm_rando-0.1.25-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e09fca90a5d18d37a243c3fb32ebc29795b3766c18331e1d6192b78078e46665",
                "md5": "ad10bf48d180267d578eb5941dc6f869",
                "sha256": "f62f2963a24aad897328a9d4d7c5446c919a3049aa1132991a7bdee203703e1a"
            },
            "downloads": -1,
            "filename": "intecomm-rando-0.1.25.tar.gz",
            "has_sig": false,
            "md5_digest": "ad10bf48d180267d578eb5941dc6f869",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.11",
            "size": 37120,
            "upload_time": "2024-04-11T00:28:21",
            "upload_time_iso_8601": "2024-04-11T00:28:21.919491Z",
            "url": "https://files.pythonhosted.org/packages/e0/9f/ca90a5d18d37a243c3fb32ebc29795b3766c18331e1d6192b78078e46665/intecomm-rando-0.1.25.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-11 00:28:21",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "intecomm-trial",
    "github_project": "intecomm-rando",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": true,
    "lcname": "intecomm-rando"
}
        
Elapsed time: 0.48034s