Optimized implementation of [numpy](http://www.numpy.org/), leveraging IntelĀ® Math Kernel Library to achieve highly efficient multi-threading, vectorization, and memory management.
It provides:
- a powerful N-dimensional array object
- sophisticated (broadcasting) functions
- tools for integrating C/C++ and Fortran code
- useful linear algebra, Fourier transform, and random number capabilities
- and much more
Besides its obvious scientific uses, NumPy can also be used as an efficient
multi-dimensional container of generic data. Arbitrary data-types can be
defined. This allows NumPy to seamlessly and speedily integrate with a wide
variety of databases.
All NumPy wheels distributed on PyPI are BSD licensed.
## Install instruction
**Intel optimized NumPy Pypi packages are now distributed via Anaconda Cloud.**
**To install Intel optimized NumPy Pypi package please use following command:**
```
python -m pip install -i https://pypi.anaconda.org/intel/simple numpy
```
Raw data
{
"_id": null,
"home_page": "https://www.numpy.org",
"name": "intel-numpy",
"maintainer": "NumPy Developers",
"docs_url": null,
"requires_python": ">=3.7,<3.11",
"maintainer_email": "numpy-discussion@python.org",
"keywords": "",
"author": "Travis E. Oliphant et al.",
"author_email": "",
"download_url": "https://pypi.python.org/pypi/numpy",
"platform": "Windows",
"description": "Optimized implementation of [numpy](http://www.numpy.org/), leveraging Intel\u00ae Math Kernel Library to achieve highly efficient multi-threading, vectorization, and memory management.\n\nIt provides:\n\n- a powerful N-dimensional array object\n- sophisticated (broadcasting) functions\n- tools for integrating C/C++ and Fortran code\n- useful linear algebra, Fourier transform, and random number capabilities\n- and much more\n\nBesides its obvious scientific uses, NumPy can also be used as an efficient\nmulti-dimensional container of generic data. Arbitrary data-types can be\ndefined. This allows NumPy to seamlessly and speedily integrate with a wide\nvariety of databases.\n\nAll NumPy wheels distributed on PyPI are BSD licensed.\n\n\n## Install instruction\n\n**Intel optimized NumPy Pypi packages are now distributed via Anaconda Cloud.**\n\n**To install Intel optimized NumPy Pypi package please use following command:**\n```\npython -m pip install -i https://pypi.anaconda.org/intel/simple numpy\n```\n",
"bugtrack_url": null,
"license": "BSD",
"summary": "NumPy is the fundamental package for array computing with Python.",
"version": "1.21.5",
"project_urls": {
"Bug Tracker": "https://github.com/numpy/numpy/issues",
"Documentation": "https://numpy.org/doc/1.21",
"Download": "https://pypi.python.org/pypi/numpy",
"Homepage": "https://www.numpy.org",
"Source Code": "https://github.com/numpy/numpy"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "34be49d08086b9a1131c92552d0c4d283819818da7f9991bfeeca76963419a72",
"md5": "9151eb878ce22ab33a7c976e7ebcd55d",
"sha256": "3b1c594055c0a2586c26833a839150e07bc1c949d362fde9c0f4a24437f89a89"
},
"downloads": -1,
"filename": "intel_numpy-1.21.5-cp39-cp39-manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "9151eb878ce22ab33a7c976e7ebcd55d",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.7,<3.11",
"size": 6593920,
"upload_time": "2023-11-30T14:24:06",
"upload_time_iso_8601": "2023-11-30T14:24:06.533250Z",
"url": "https://files.pythonhosted.org/packages/34/be/49d08086b9a1131c92552d0c4d283819818da7f9991bfeeca76963419a72/intel_numpy-1.21.5-cp39-cp39-manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-11-30 14:24:06",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "numpy",
"github_project": "numpy",
"travis_ci": false,
"coveralls": true,
"github_actions": true,
"circle": true,
"test_requirements": [],
"lcname": "intel-numpy"
}