intel-numpy


Nameintel-numpy JSON
Version 1.21.5 PyPI version JSON
download
home_pagehttps://www.numpy.org
SummaryNumPy is the fundamental package for array computing with Python.
upload_time2023-11-30 14:24:06
maintainerNumPy Developers
docs_urlNone
authorTravis E. Oliphant et al.
requires_python>=3.7,<3.11
licenseBSD
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage
            Optimized implementation of [numpy](http://www.numpy.org/), leveraging IntelĀ® Math Kernel Library to achieve highly efficient multi-threading, vectorization, and memory management.

It provides:

- a powerful N-dimensional array object
- sophisticated (broadcasting) functions
- tools for integrating C/C++ and Fortran code
- useful linear algebra, Fourier transform, and random number capabilities
- and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient
multi-dimensional container of generic data. Arbitrary data-types can be
defined. This allows NumPy to seamlessly and speedily integrate with a wide
variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.


## Install instruction

**Intel optimized NumPy Pypi packages are now distributed via Anaconda Cloud.**

**To install Intel optimized NumPy Pypi package please use following command:**
```
python -m pip install -i https://pypi.anaconda.org/intel/simple numpy
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://www.numpy.org",
    "name": "intel-numpy",
    "maintainer": "NumPy Developers",
    "docs_url": null,
    "requires_python": ">=3.7,<3.11",
    "maintainer_email": "numpy-discussion@python.org",
    "keywords": "",
    "author": "Travis E. Oliphant et al.",
    "author_email": "",
    "download_url": "https://pypi.python.org/pypi/numpy",
    "platform": "Windows",
    "description": "Optimized implementation of [numpy](http://www.numpy.org/), leveraging Intel\u00ae Math Kernel Library to achieve highly efficient multi-threading, vectorization, and memory management.\n\nIt provides:\n\n- a powerful N-dimensional array object\n- sophisticated (broadcasting) functions\n- tools for integrating C/C++ and Fortran code\n- useful linear algebra, Fourier transform, and random number capabilities\n- and much more\n\nBesides its obvious scientific uses, NumPy can also be used as an efficient\nmulti-dimensional container of generic data. Arbitrary data-types can be\ndefined. This allows NumPy to seamlessly and speedily integrate with a wide\nvariety of databases.\n\nAll NumPy wheels distributed on PyPI are BSD licensed.\n\n\n## Install instruction\n\n**Intel optimized NumPy Pypi packages are now distributed via Anaconda Cloud.**\n\n**To install Intel optimized NumPy Pypi package please use following command:**\n```\npython -m pip install -i https://pypi.anaconda.org/intel/simple numpy\n```\n",
    "bugtrack_url": null,
    "license": "BSD",
    "summary": "NumPy is the fundamental package for array computing with Python.",
    "version": "1.21.5",
    "project_urls": {
        "Bug Tracker": "https://github.com/numpy/numpy/issues",
        "Documentation": "https://numpy.org/doc/1.21",
        "Download": "https://pypi.python.org/pypi/numpy",
        "Homepage": "https://www.numpy.org",
        "Source Code": "https://github.com/numpy/numpy"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "34be49d08086b9a1131c92552d0c4d283819818da7f9991bfeeca76963419a72",
                "md5": "9151eb878ce22ab33a7c976e7ebcd55d",
                "sha256": "3b1c594055c0a2586c26833a839150e07bc1c949d362fde9c0f4a24437f89a89"
            },
            "downloads": -1,
            "filename": "intel_numpy-1.21.5-cp39-cp39-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "9151eb878ce22ab33a7c976e7ebcd55d",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.7,<3.11",
            "size": 6593920,
            "upload_time": "2023-11-30T14:24:06",
            "upload_time_iso_8601": "2023-11-30T14:24:06.533250Z",
            "url": "https://files.pythonhosted.org/packages/34/be/49d08086b9a1131c92552d0c4d283819818da7f9991bfeeca76963419a72/intel_numpy-1.21.5-cp39-cp39-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-11-30 14:24:06",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "numpy",
    "github_project": "numpy",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": true,
    "circle": true,
    "test_requirements": [],
    "lcname": "intel-numpy"
}
        
Elapsed time: 6.15086s