intelligentML


NameintelligentML JSON
Version 0.1 PyPI version JSON
download
home_pagehttps://github.com/Nasif-Azam/intelligentML_python
SummaryAn intelligent machine learning package. A Python library for handling duplicate data and performing data preprocessing on datasets. This library provides functions to identify and remove duplicate rows, handle missing values, and prepare data for analysis. All you have to do just provide the dataset url or path the library automatically do those tasks.
upload_time2023-10-03 12:27:08
maintainer
docs_urlNone
authorNasif Azam
requires_python>=3.6
license
keywords ['data preprocessing' 'data cleaning' 'duplicate data' 'pandas' 'numpy' 'data analysis' 'missing values' 'data manipulation']
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Iltelligent Machine Learning Task using Python

[![forthebadge made-with-python](http://ForTheBadge.com/images/badges/made-with-python.svg)](https://www.python.org/)                 
[![Python 3.6](https://img.shields.io/badge/python-3.6-blue.svg)](https://www.python.org/downloads/release/python-360/)   

## Functionality of the Package

- hd_and_dp(dataPath) : Both handle duplication and data preprocessing by sending the dataset url or path link.
- handle_duplication(dataPath) : Handle duplication by sending the dataset url or path link.
- dataPreprocessing(dataPath) : Data preprocessing by sending the dataset url or path link.

## Usage

- Make sure you have Python installed in your system.
- Run Following command in the CMD.
 ```
  pip install intelligentML
  ```
## Example-1

 ```
# test.py:

from intelligentML import hd_and_dp
url = "example.csv"
finalDataset = hd_and_dp(url)
print(f"Final Preprocessed Dataset: \n{finalDataset}")
  ```
## Example-2

 ```
# test.py:

from intelligentML import handle_duplication
url = "example.csv"
NoDupDataset = handle_duplication(url)
print(f"Dataset Without Duplications: \n{NoDupDataset}")
  ```
## Example-3

 ```
# test.py:

from intelligentML import dataPreprocessing
url = "example.csv"
PreproccessedDataset = dataPreprocessing(url)
print(f"Preprocessed Dataset: \n{PreproccessedDataset}")
  ```

## Run the following Script.
 ```
  python test.py
 ```

## Note 
- It is a very tiny package according to the large ML areas. I will update the package till to advance.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Nasif-Azam/intelligentML_python",
    "name": "intelligentML",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "['data preprocessing','data cleaning','duplicate data','pandas','NumPy','data analysis','missing values','data manipulation']",
    "author": "Nasif Azam",
    "author_email": "nasifazam07@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/70/1f/3eab3e7c5c28bf53144e4395e7ccb4dc166483268ef460e50ae617a05f2e/intelligentML-0.1.tar.gz",
    "platform": null,
    "description": "# Iltelligent Machine Learning Task using Python\r\n\r\n[![forthebadge made-with-python](http://ForTheBadge.com/images/badges/made-with-python.svg)](https://www.python.org/)                 \r\n[![Python 3.6](https://img.shields.io/badge/python-3.6-blue.svg)](https://www.python.org/downloads/release/python-360/)   \r\n\r\n## Functionality of the Package\r\n\r\n- hd_and_dp(dataPath) : Both handle duplication and data preprocessing by sending the dataset url or path link.\r\n- handle_duplication(dataPath) : Handle duplication by sending the dataset url or path link.\r\n- dataPreprocessing(dataPath) : Data preprocessing by sending the dataset url or path link.\r\n\r\n## Usage\r\n\r\n- Make sure you have Python installed in your system.\r\n- Run Following command in the CMD.\r\n ```\r\n  pip install intelligentML\r\n  ```\r\n## Example-1\r\n\r\n ```\r\n# test.py:\r\n\r\nfrom intelligentML import hd_and_dp\r\nurl = \"example.csv\"\r\nfinalDataset = hd_and_dp(url)\r\nprint(f\"Final Preprocessed Dataset: \\n{finalDataset}\")\r\n  ```\r\n## Example-2\r\n\r\n ```\r\n# test.py:\r\n\r\nfrom intelligentML import handle_duplication\r\nurl = \"example.csv\"\r\nNoDupDataset = handle_duplication(url)\r\nprint(f\"Dataset Without Duplications: \\n{NoDupDataset}\")\r\n  ```\r\n## Example-3\r\n\r\n ```\r\n# test.py:\r\n\r\nfrom intelligentML import dataPreprocessing\r\nurl = \"example.csv\"\r\nPreproccessedDataset = dataPreprocessing(url)\r\nprint(f\"Preprocessed Dataset: \\n{PreproccessedDataset}\")\r\n  ```\r\n\r\n## Run the following Script.\r\n ```\r\n  python test.py\r\n ```\r\n\r\n## Note \r\n- It is a very tiny package according to the large ML areas. I will update the package till to advance.\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "An intelligent machine learning package. A Python library for handling duplicate data and performing data preprocessing on datasets. This library provides functions to identify and remove duplicate rows, handle missing values, and prepare data for analysis. All you have to do just provide the dataset url or path the library automatically do those tasks.",
    "version": "0.1",
    "project_urls": {
        "Bug Tracker": "https://github.com/Nasif-Azam/intelligentML_python/issues",
        "Homepage": "https://github.com/Nasif-Azam/intelligentML_python"
    },
    "split_keywords": [
        "['data preprocessing'",
        "'data cleaning'",
        "'duplicate data'",
        "'pandas'",
        "'numpy'",
        "'data analysis'",
        "'missing values'",
        "'data manipulation']"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7a0cfc59749a999996ff0f17172325af33771e88dbf33c059b08f549e8fb9a27",
                "md5": "729cd0637cc1dce586a329e656520359",
                "sha256": "137d13816c50143dd7f66414c690ea01e18d75ce0e9154261846fb88cae3025d"
            },
            "downloads": -1,
            "filename": "intelligentML-0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "729cd0637cc1dce586a329e656520359",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 2840,
            "upload_time": "2023-10-03T12:27:06",
            "upload_time_iso_8601": "2023-10-03T12:27:06.688654Z",
            "url": "https://files.pythonhosted.org/packages/7a/0c/fc59749a999996ff0f17172325af33771e88dbf33c059b08f549e8fb9a27/intelligentML-0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "701f3eab3e7c5c28bf53144e4395e7ccb4dc166483268ef460e50ae617a05f2e",
                "md5": "3a2fde718081d055788fa40a2097771a",
                "sha256": "7ff5509b35e4df553a203e7a56689669e13aee18d553ffed52f47086feb7493b"
            },
            "downloads": -1,
            "filename": "intelligentML-0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "3a2fde718081d055788fa40a2097771a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 3559,
            "upload_time": "2023-10-03T12:27:08",
            "upload_time_iso_8601": "2023-10-03T12:27:08.554462Z",
            "url": "https://files.pythonhosted.org/packages/70/1f/3eab3e7c5c28bf53144e4395e7ccb4dc166483268ef460e50ae617a05f2e/intelligentML-0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-10-03 12:27:08",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Nasif-Azam",
    "github_project": "intelligentML_python",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "intelligentml"
}
        
Elapsed time: 2.04926s