investor-agent


Nameinvestor-agent JSON
Version 1.5.0 PyPI version JSON
download
home_pageNone
SummaryA Model Context Protocol server for an investor agent
upload_time2025-10-30 07:46:54
maintainerNone
docs_urlNone
authorNone
requires_python>=3.12
licenseNone
keywords agent broker finance investment mcp model context protocol robinhood trading wallstreetbets
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![MseeP.ai Security Assessment Badge](https://mseep.net/pr/ferdousbhai-investor-agent-badge.png)](https://mseep.ai/app/ferdousbhai-investor-agent)

[![Trust Score](https://archestra.ai/mcp-catalog/api/badge/quality/ferdousbhai/investor-agent)](https://archestra.ai/mcp-catalog/ferdousbhai__investor-agent)

# investor-agent: A Financial Analysis MCP Server

## Overview

The **investor-agent** is a Model Context Protocol (MCP) server that provides comprehensive financial insights and analysis to Large Language Models. It leverages real-time market data, fundamental and technical analysis to deliver:

- **Market Movers:** Top gainers, losers, and most active stocks with support for different market sessions
- **Ticker Analysis:** Company overview, news, metrics, analyst recommendations, and upgrades/downgrades
- **Options Data:** Filtered options chains with customizable parameters
- **Historical Data:** Price trends and earnings history
- **Financial Statements:** Income, balance sheet, and cash flow statements
- **Ownership Analysis:** Institutional holders and insider trading activity
- **Earnings Calendar:** Upcoming earnings announcements with date filtering
- **Market Sentiment:** CNN Fear & Greed Index, Crypto Fear & Greed Index, and Google Trends sentiment analysis
- **Technical Analysis:** SMA, EMA, RSI, MACD, BBANDS indicators (optional)
- **Intraday Data:** 15-minute historical stock bars via Alpaca API (optional)

The server integrates with [yfinance](https://pypi.org/project/yfinance/) for market data and automatically optimizes data volume for better performance.

## Architecture & Performance

**Robust Caching & Error Handling Strategy:**

1. **`yfinance[nospam]`** → Built-in smart caching + rate limiting for Yahoo Finance API
2. **`hishel`** → HTTP response caching for external APIs (CNN, crypto, earnings data)
3. **`tenacity`** → Retry logic with exponential backoff for transient failures

This multi-layered approach ensures reliable data delivery while respecting API rate limits and minimizing redundant requests.

## Prerequisites

- **Python:** 3.12 or higher
- **Package Manager:** [uv](https://docs.astral.sh/uv/). Install if needed:
  ```bash
  curl -LsSf https://astral.sh/uv/install.sh | sh
  ```

### Optional Dependencies

- **TA-Lib C Library:** Required for technical indicators. Follow [official installation instructions](https://ta-lib.org/install/).
- **Alpaca API:** Required for intraday stock data. Get free API keys at [Alpaca Markets](https://alpaca.markets/).

## Installation

### Quick Start

```bash
# Core features only
uvx investor-agent

# With technical indicators (requires TA-Lib)
uvx "investor-agent[ta]"

# With Alpaca intraday data (requires Alpaca API keys)
uvx "investor-agent[alpaca]"

# With all optional features
uvx "investor-agent[ta,alpaca]"
```

## Tools

### Market Data
- **`get_market_movers(category="most-active", count=25, market_session="regular")`** - Market movers data including top gainers, losers, or most active stocks. Supports different market sessions (regular/pre-market/after-hours) for most-active category. Returns up to 100 stocks with cleaned percentage changes, volume, and market cap data
- **`get_ticker_data(ticker, max_news=5, max_recommendations=5, max_upgrades=5)`** - Comprehensive ticker report with essential field filtering and configurable limits for news, analyst recommendations, and upgrades/downgrades
- **`get_options(ticker_symbol, num_options=10, start_date=None, end_date=None, strike_lower=None, strike_upper=None, option_type=None)`** - Options data with advanced filtering by date range (YYYY-MM-DD), strike price bounds, and option type (C=calls, P=puts)
- **`get_price_history(ticker, period="1mo")`** - Historical OHLCV data with intelligent interval selection: daily intervals for periods ≤1y, monthly intervals for periods ≥2y to optimize data volume
- **`get_financial_statements(ticker, statement_types=["income"], frequency="quarterly", max_periods=8)`** - Financial statements with parallel fetching support. Returns dict with statement type as key
- **`get_institutional_holders(ticker, top_n=20)`** - Major institutional and mutual fund holders data
- **`get_earnings_history(ticker, max_entries=8)`** - Historical earnings data with configurable entry limits
- **`get_insider_trades(ticker, max_trades=20)`** - Recent insider trading activity with configurable trade limits
- **`get_nasdaq_earnings_calendar(date=None, limit=100)`** - Upcoming earnings announcements using Nasdaq API (YYYY-MM-DD format, defaults to today).
- **`fetch_intraday_data(stock, window=200)`** - Fetch 15-minute historical stock bars using Alpaca API. Returns CSV string with timestamp and close price data in EST timezone. Requires `investor-agent[alpaca]` installation and ALPACA_API_KEY/ALPACA_API_SECRET environment variables.

### Market Sentiment
- **`get_cnn_fear_greed_index(indicators=None)`** - CNN Fear & Greed Index with selective indicator filtering. Available indicators: fear_and_greed, fear_and_greed_historical, put_call_options, market_volatility_vix, market_volatility_vix_50, junk_bond_demand, safe_haven_demand
- **`get_crypto_fear_greed_index()`** - Current Crypto Fear & Greed Index with value, classification, and timestamp
- **`get_google_trends(keywords, period_days=7)`** - Google Trends relative search interest for market-related keywords. Requires a list of keywords to track (e.g., ["stock market crash", "bull market", "recession", "inflation"]). Returns relative search interest scores that can be used as sentiment indicators.

### Technical Analysis
- **`calculate_technical_indicator(ticker, indicator, period="1y", timeperiod=14, fastperiod=12, slowperiod=26, signalperiod=9, nbdev=2, matype=0, num_results=100)`** - Calculate technical indicators (SMA, EMA, RSI, MACD, BBANDS) with configurable parameters and result limiting. Returns dictionary with price_data and indicator_data as CSV strings. matype values: 0=SMA, 1=EMA, 2=WMA, 3=DEMA, 4=TEMA, 5=TRIMA, 6=KAMA, 7=MAMA, 8=T3. Requires TA-Lib library.

## Usage with MCP Clients

Add to your `claude_desktop_config.json`:

```json
{
  "mcpServers": {
    "investor": {
      "command": "uvx",
      "args": ["investor-agent"]
    }
  }
}
```

## Local Testing

For local development and testing, use the included `chat.py` script:

```bash
# Install dev dependencies
uv sync --group dev

# Set up your API key
export OPENAI_API_KEY="your-api-key"  # or ANTHROPIC_API_KEY, GEMINI_API_KEY, etc.

# Optional: Set custom model (defaults to openai:gpt-5-mini)
export MODEL_IDENTIFIER="your-preferred-model"

# Run the chat interface
python chat.py
```

For available model providers and identifiers, see the [pydantic-ai documentation](https://ai.pydantic.dev/models/).

## Debugging

```bash
npx @modelcontextprotocol/inspector uvx investor-agent
```

## License

MIT License. See [LICENSE](LICENSE) file for details.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "investor-agent",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.12",
    "maintainer_email": null,
    "keywords": "agent, broker, finance, investment, mcp, model context protocol, robinhood, trading, wallstreetbets",
    "author": null,
    "author_email": "Ferdous <ferdous@hey.com>",
    "download_url": "https://files.pythonhosted.org/packages/b5/95/bee11fd1f2bc74958735a5b738cb4e3531442048ff4d896a181dd525aa1d/investor_agent-1.5.0.tar.gz",
    "platform": null,
    "description": "[![MseeP.ai Security Assessment Badge](https://mseep.net/pr/ferdousbhai-investor-agent-badge.png)](https://mseep.ai/app/ferdousbhai-investor-agent)\n\n[![Trust Score](https://archestra.ai/mcp-catalog/api/badge/quality/ferdousbhai/investor-agent)](https://archestra.ai/mcp-catalog/ferdousbhai__investor-agent)\n\n# investor-agent: A Financial Analysis MCP Server\n\n## Overview\n\nThe **investor-agent** is a Model Context Protocol (MCP) server that provides comprehensive financial insights and analysis to Large Language Models. It leverages real-time market data, fundamental and technical analysis to deliver:\n\n- **Market Movers:** Top gainers, losers, and most active stocks with support for different market sessions\n- **Ticker Analysis:** Company overview, news, metrics, analyst recommendations, and upgrades/downgrades\n- **Options Data:** Filtered options chains with customizable parameters\n- **Historical Data:** Price trends and earnings history\n- **Financial Statements:** Income, balance sheet, and cash flow statements\n- **Ownership Analysis:** Institutional holders and insider trading activity\n- **Earnings Calendar:** Upcoming earnings announcements with date filtering\n- **Market Sentiment:** CNN Fear & Greed Index, Crypto Fear & Greed Index, and Google Trends sentiment analysis\n- **Technical Analysis:** SMA, EMA, RSI, MACD, BBANDS indicators (optional)\n- **Intraday Data:** 15-minute historical stock bars via Alpaca API (optional)\n\nThe server integrates with [yfinance](https://pypi.org/project/yfinance/) for market data and automatically optimizes data volume for better performance.\n\n## Architecture & Performance\n\n**Robust Caching & Error Handling Strategy:**\n\n1. **`yfinance[nospam]`** \u2192 Built-in smart caching + rate limiting for Yahoo Finance API\n2. **`hishel`** \u2192 HTTP response caching for external APIs (CNN, crypto, earnings data)\n3. **`tenacity`** \u2192 Retry logic with exponential backoff for transient failures\n\nThis multi-layered approach ensures reliable data delivery while respecting API rate limits and minimizing redundant requests.\n\n## Prerequisites\n\n- **Python:** 3.12 or higher\n- **Package Manager:** [uv](https://docs.astral.sh/uv/). Install if needed:\n  ```bash\n  curl -LsSf https://astral.sh/uv/install.sh | sh\n  ```\n\n### Optional Dependencies\n\n- **TA-Lib C Library:** Required for technical indicators. Follow [official installation instructions](https://ta-lib.org/install/).\n- **Alpaca API:** Required for intraday stock data. Get free API keys at [Alpaca Markets](https://alpaca.markets/).\n\n## Installation\n\n### Quick Start\n\n```bash\n# Core features only\nuvx investor-agent\n\n# With technical indicators (requires TA-Lib)\nuvx \"investor-agent[ta]\"\n\n# With Alpaca intraday data (requires Alpaca API keys)\nuvx \"investor-agent[alpaca]\"\n\n# With all optional features\nuvx \"investor-agent[ta,alpaca]\"\n```\n\n## Tools\n\n### Market Data\n- **`get_market_movers(category=\"most-active\", count=25, market_session=\"regular\")`** - Market movers data including top gainers, losers, or most active stocks. Supports different market sessions (regular/pre-market/after-hours) for most-active category. Returns up to 100 stocks with cleaned percentage changes, volume, and market cap data\n- **`get_ticker_data(ticker, max_news=5, max_recommendations=5, max_upgrades=5)`** - Comprehensive ticker report with essential field filtering and configurable limits for news, analyst recommendations, and upgrades/downgrades\n- **`get_options(ticker_symbol, num_options=10, start_date=None, end_date=None, strike_lower=None, strike_upper=None, option_type=None)`** - Options data with advanced filtering by date range (YYYY-MM-DD), strike price bounds, and option type (C=calls, P=puts)\n- **`get_price_history(ticker, period=\"1mo\")`** - Historical OHLCV data with intelligent interval selection: daily intervals for periods \u22641y, monthly intervals for periods \u22652y to optimize data volume\n- **`get_financial_statements(ticker, statement_types=[\"income\"], frequency=\"quarterly\", max_periods=8)`** - Financial statements with parallel fetching support. Returns dict with statement type as key\n- **`get_institutional_holders(ticker, top_n=20)`** - Major institutional and mutual fund holders data\n- **`get_earnings_history(ticker, max_entries=8)`** - Historical earnings data with configurable entry limits\n- **`get_insider_trades(ticker, max_trades=20)`** - Recent insider trading activity with configurable trade limits\n- **`get_nasdaq_earnings_calendar(date=None, limit=100)`** - Upcoming earnings announcements using Nasdaq API (YYYY-MM-DD format, defaults to today).\n- **`fetch_intraday_data(stock, window=200)`** - Fetch 15-minute historical stock bars using Alpaca API. Returns CSV string with timestamp and close price data in EST timezone. Requires `investor-agent[alpaca]` installation and ALPACA_API_KEY/ALPACA_API_SECRET environment variables.\n\n### Market Sentiment\n- **`get_cnn_fear_greed_index(indicators=None)`** - CNN Fear & Greed Index with selective indicator filtering. Available indicators: fear_and_greed, fear_and_greed_historical, put_call_options, market_volatility_vix, market_volatility_vix_50, junk_bond_demand, safe_haven_demand\n- **`get_crypto_fear_greed_index()`** - Current Crypto Fear & Greed Index with value, classification, and timestamp\n- **`get_google_trends(keywords, period_days=7)`** - Google Trends relative search interest for market-related keywords. Requires a list of keywords to track (e.g., [\"stock market crash\", \"bull market\", \"recession\", \"inflation\"]). Returns relative search interest scores that can be used as sentiment indicators.\n\n### Technical Analysis\n- **`calculate_technical_indicator(ticker, indicator, period=\"1y\", timeperiod=14, fastperiod=12, slowperiod=26, signalperiod=9, nbdev=2, matype=0, num_results=100)`** - Calculate technical indicators (SMA, EMA, RSI, MACD, BBANDS) with configurable parameters and result limiting. Returns dictionary with price_data and indicator_data as CSV strings. matype values: 0=SMA, 1=EMA, 2=WMA, 3=DEMA, 4=TEMA, 5=TRIMA, 6=KAMA, 7=MAMA, 8=T3. Requires TA-Lib library.\n\n## Usage with MCP Clients\n\nAdd to your `claude_desktop_config.json`:\n\n```json\n{\n  \"mcpServers\": {\n    \"investor\": {\n      \"command\": \"uvx\",\n      \"args\": [\"investor-agent\"]\n    }\n  }\n}\n```\n\n## Local Testing\n\nFor local development and testing, use the included `chat.py` script:\n\n```bash\n# Install dev dependencies\nuv sync --group dev\n\n# Set up your API key\nexport OPENAI_API_KEY=\"your-api-key\"  # or ANTHROPIC_API_KEY, GEMINI_API_KEY, etc.\n\n# Optional: Set custom model (defaults to openai:gpt-5-mini)\nexport MODEL_IDENTIFIER=\"your-preferred-model\"\n\n# Run the chat interface\npython chat.py\n```\n\nFor available model providers and identifiers, see the [pydantic-ai documentation](https://ai.pydantic.dev/models/).\n\n## Debugging\n\n```bash\nnpx @modelcontextprotocol/inspector uvx investor-agent\n```\n\n## License\n\nMIT License. See [LICENSE](LICENSE) file for details.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A Model Context Protocol server for an investor agent",
    "version": "1.5.0",
    "project_urls": null,
    "split_keywords": [
        "agent",
        " broker",
        " finance",
        " investment",
        " mcp",
        " model context protocol",
        " robinhood",
        " trading",
        " wallstreetbets"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "467848d8489f6c051e67143a69684e5e176329ae3b6a50080e6b82ea464c63fc",
                "md5": "f9025775a4f4a1e5495b6d9bcfedcdd8",
                "sha256": "a6e6d89dd0559666523ce97146aa4f4f29f1a02190e906d22850ed34c9cd2741"
            },
            "downloads": -1,
            "filename": "investor_agent-1.5.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "f9025775a4f4a1e5495b6d9bcfedcdd8",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.12",
            "size": 14687,
            "upload_time": "2025-10-30T07:46:52",
            "upload_time_iso_8601": "2025-10-30T07:46:52.507368Z",
            "url": "https://files.pythonhosted.org/packages/46/78/48d8489f6c051e67143a69684e5e176329ae3b6a50080e6b82ea464c63fc/investor_agent-1.5.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "b595bee11fd1f2bc74958735a5b738cb4e3531442048ff4d896a181dd525aa1d",
                "md5": "8dcc015c4d5f78cda992ec8d84064d28",
                "sha256": "e25037184f2598aca21e0a1599a9f65dd5f3ffedb78e151cbc764970115b5a14"
            },
            "downloads": -1,
            "filename": "investor_agent-1.5.0.tar.gz",
            "has_sig": false,
            "md5_digest": "8dcc015c4d5f78cda992ec8d84064d28",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.12",
            "size": 126038,
            "upload_time": "2025-10-30T07:46:54",
            "upload_time_iso_8601": "2025-10-30T07:46:54.977442Z",
            "url": "https://files.pythonhosted.org/packages/b5/95/bee11fd1f2bc74958735a5b738cb4e3531442048ff4d896a181dd525aa1d/investor_agent-1.5.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-30 07:46:54",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "investor-agent"
}
        
Elapsed time: 1.11698s