investor-agent


Nameinvestor-agent JSON
Version 1.0.1 PyPI version JSON
download
home_pageNone
SummaryA Model Context Protocol server for an investor agent
upload_time2025-07-22 12:39:41
maintainerNone
docs_urlNone
authorNone
requires_python>=3.12
licenseNone
keywords agent broker finance investment mcp model context protocol robinhood trading wallstreetbets
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![MseeP.ai Security Assessment Badge](https://mseep.net/pr/ferdousbhai-investor-agent-badge.png)](https://mseep.ai/app/ferdousbhai-investor-agent)

# investor-agent: A Financial Analysis MCP Server

## Overview

The **investor-agent** is a Model Context Protocol (MCP) server that provides comprehensive financial insights and analysis to Large Language Models. It leverages real-time market data, fundamental and technical analysis to deliver:

- **Ticker Analysis:** Company overview, news, metrics, analyst recommendations, and upgrades/downgrades
- **Options Data:** Filtered options chains with customizable parameters
- **Historical Data:** Price trends and earnings history
- **Financial Statements:** Income, balance sheet, and cash flow statements
- **Ownership Analysis:** Institutional holders and insider trading activity
- **Market Sentiment:** CNN Fear & Greed Index, Crypto Fear & Greed Index, and Google Trends sentiment analysis
- **Technical Analysis:** SMA, EMA, RSI, MACD, BBANDS indicators (optional)

The server integrates with [yfinance](https://pypi.org/project/yfinance/) for market data and automatically optimizes data volume for better performance.

## Prerequisites

- **Python:** 3.12 or higher
- **Package Manager:** [uv](https://docs.astral.sh/uv/). Install if needed:
  ```bash
  curl -LsSf https://astral.sh/uv/install.sh | sh
  ```

### Optional: TA-Lib C Library
Required for technical indicators. Follow [official installation instructions](https://ta-lib.org/install/).

## Installation

### Quick Start

```bash
# Core features only
uvx investor-agent

# With technical indicators (requires TA-Lib)
uvx "investor-agent[ta]"
```

## Tools

### Market Data
- **`get_ticker_data(ticker, max_news=5, max_recommendations=5, max_upgrades=5)`** - Comprehensive ticker report with smart field filtering to exclude irrelevant metadata and configurable limits for news, recommendations, and upgrades/downgrades
- **`get_options(ticker_symbol, num_options=10, start_date, end_date, strike_lower, strike_upper, option_type)`** - Options data with advanced filtering by date range (YYYY-MM-DD), strike price bounds, and option type (C=calls, P=puts)
- **`get_price_history(ticker, period="1mo")`** - Historical OHLCV data with intelligent interval selection: daily intervals for periods ≤1y, monthly intervals for periods ≥2y to optimize data volume
- **`get_financial_statements(ticker, statement_type="income", frequency="quarterly", max_periods=8)`** - Financial statements (income/balance/cash) with period limiting for context optimization
- **`get_institutional_holders(ticker, top_n=20)`** - Major institutional and mutual fund holders data
- **`get_earnings_history(ticker, max_entries=8)`** - Historical earnings data with configurable entry limits
- **`get_insider_trades(ticker, max_trades=20)`** - Recent insider trading activity with configurable trade limits

### Market Sentiment
- **`get_cnn_fear_greed_index(days=0, indicators=None)`** - CNN Fear & Greed Index with support for up to 30 days of historical data and selective indicator filtering. Available indicators: fear_and_greed, fear_and_greed_historical, put_call_options, market_volatility_vix, market_volatility_vix_50, junk_bond_demand, safe_haven_demand
- **`get_crypto_fear_greed_index(days=7)`** - Crypto Fear & Greed Index with configurable historical data period
- **`get_google_trends(keywords, period_days=7)`** - Google Trends relative search interest for market-related keywords. Requires a list of keywords to track (e.g., ["stock market crash", "bull market", "recession", "inflation"]). Returns relative search interest scores that can be used as sentiment indicators.

### Technical Analysis
- **`calculate_technical_indicator(ticker, indicator, period="1y", timeperiod=14, ...)`** - Calculate technical indicators (SMA, EMA, RSI, MACD, BBANDS) with configurable parameters and result limiting. Returns time-aligned data with price history and indicator values. Requires TA-Lib library.

## Usage with MCP Clients

Add to your `claude_desktop_config.json`:

```json
{
  "mcpServers": {
    "investor": {
      "command": "uvx",
      "args": ["investor-agent"]
    }
  }
}
```

## Debugging

```bash
npx @modelcontextprotocol/inspector uvx investor-agent
```

**Log locations:**
- macOS: `~/Library/Logs/Claude/mcp*.log`
- Windows: `%APPDATA%\Claude\logs\mcp*.log`

## License

MIT License. See [LICENSE](LICENSE) file for details.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "investor-agent",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.12",
    "maintainer_email": null,
    "keywords": "agent, broker, finance, investment, mcp, model context protocol, robinhood, trading, wallstreetbets",
    "author": null,
    "author_email": "Ferdous <ferdous@hey.com>",
    "download_url": "https://files.pythonhosted.org/packages/7b/8c/9a7c90e7c99d28e2340491a5b5bc870acb2e6b078e1bb745317501612249/investor_agent-1.0.1.tar.gz",
    "platform": null,
    "description": "[![MseeP.ai Security Assessment Badge](https://mseep.net/pr/ferdousbhai-investor-agent-badge.png)](https://mseep.ai/app/ferdousbhai-investor-agent)\n\n# investor-agent: A Financial Analysis MCP Server\n\n## Overview\n\nThe **investor-agent** is a Model Context Protocol (MCP) server that provides comprehensive financial insights and analysis to Large Language Models. It leverages real-time market data, fundamental and technical analysis to deliver:\n\n- **Ticker Analysis:** Company overview, news, metrics, analyst recommendations, and upgrades/downgrades\n- **Options Data:** Filtered options chains with customizable parameters\n- **Historical Data:** Price trends and earnings history\n- **Financial Statements:** Income, balance sheet, and cash flow statements\n- **Ownership Analysis:** Institutional holders and insider trading activity\n- **Market Sentiment:** CNN Fear & Greed Index, Crypto Fear & Greed Index, and Google Trends sentiment analysis\n- **Technical Analysis:** SMA, EMA, RSI, MACD, BBANDS indicators (optional)\n\nThe server integrates with [yfinance](https://pypi.org/project/yfinance/) for market data and automatically optimizes data volume for better performance.\n\n## Prerequisites\n\n- **Python:** 3.12 or higher\n- **Package Manager:** [uv](https://docs.astral.sh/uv/). Install if needed:\n  ```bash\n  curl -LsSf https://astral.sh/uv/install.sh | sh\n  ```\n\n### Optional: TA-Lib C Library\nRequired for technical indicators. Follow [official installation instructions](https://ta-lib.org/install/).\n\n## Installation\n\n### Quick Start\n\n```bash\n# Core features only\nuvx investor-agent\n\n# With technical indicators (requires TA-Lib)\nuvx \"investor-agent[ta]\"\n```\n\n## Tools\n\n### Market Data\n- **`get_ticker_data(ticker, max_news=5, max_recommendations=5, max_upgrades=5)`** - Comprehensive ticker report with smart field filtering to exclude irrelevant metadata and configurable limits for news, recommendations, and upgrades/downgrades\n- **`get_options(ticker_symbol, num_options=10, start_date, end_date, strike_lower, strike_upper, option_type)`** - Options data with advanced filtering by date range (YYYY-MM-DD), strike price bounds, and option type (C=calls, P=puts)\n- **`get_price_history(ticker, period=\"1mo\")`** - Historical OHLCV data with intelligent interval selection: daily intervals for periods \u22641y, monthly intervals for periods \u22652y to optimize data volume\n- **`get_financial_statements(ticker, statement_type=\"income\", frequency=\"quarterly\", max_periods=8)`** - Financial statements (income/balance/cash) with period limiting for context optimization\n- **`get_institutional_holders(ticker, top_n=20)`** - Major institutional and mutual fund holders data\n- **`get_earnings_history(ticker, max_entries=8)`** - Historical earnings data with configurable entry limits\n- **`get_insider_trades(ticker, max_trades=20)`** - Recent insider trading activity with configurable trade limits\n\n### Market Sentiment\n- **`get_cnn_fear_greed_index(days=0, indicators=None)`** - CNN Fear & Greed Index with support for up to 30 days of historical data and selective indicator filtering. Available indicators: fear_and_greed, fear_and_greed_historical, put_call_options, market_volatility_vix, market_volatility_vix_50, junk_bond_demand, safe_haven_demand\n- **`get_crypto_fear_greed_index(days=7)`** - Crypto Fear & Greed Index with configurable historical data period\n- **`get_google_trends(keywords, period_days=7)`** - Google Trends relative search interest for market-related keywords. Requires a list of keywords to track (e.g., [\"stock market crash\", \"bull market\", \"recession\", \"inflation\"]). Returns relative search interest scores that can be used as sentiment indicators.\n\n### Technical Analysis\n- **`calculate_technical_indicator(ticker, indicator, period=\"1y\", timeperiod=14, ...)`** - Calculate technical indicators (SMA, EMA, RSI, MACD, BBANDS) with configurable parameters and result limiting. Returns time-aligned data with price history and indicator values. Requires TA-Lib library.\n\n## Usage with MCP Clients\n\nAdd to your `claude_desktop_config.json`:\n\n```json\n{\n  \"mcpServers\": {\n    \"investor\": {\n      \"command\": \"uvx\",\n      \"args\": [\"investor-agent\"]\n    }\n  }\n}\n```\n\n## Debugging\n\n```bash\nnpx @modelcontextprotocol/inspector uvx investor-agent\n```\n\n**Log locations:**\n- macOS: `~/Library/Logs/Claude/mcp*.log`\n- Windows: `%APPDATA%\\Claude\\logs\\mcp*.log`\n\n## License\n\nMIT License. See [LICENSE](LICENSE) file for details.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A Model Context Protocol server for an investor agent",
    "version": "1.0.1",
    "project_urls": null,
    "split_keywords": [
        "agent",
        " broker",
        " finance",
        " investment",
        " mcp",
        " model context protocol",
        " robinhood",
        " trading",
        " wallstreetbets"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "16a3c1f056b6f7432591a936db30d5758e0652ab02fe32f85d8765340896600e",
                "md5": "63ab1289214800ec1d032dea5459aabe",
                "sha256": "be0bfd28f98f848c31663071a74b01ecc87cf1e971d87a6d53f0f50284330cad"
            },
            "downloads": -1,
            "filename": "investor_agent-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "63ab1289214800ec1d032dea5459aabe",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.12",
            "size": 13304,
            "upload_time": "2025-07-22T12:39:40",
            "upload_time_iso_8601": "2025-07-22T12:39:40.550662Z",
            "url": "https://files.pythonhosted.org/packages/16/a3/c1f056b6f7432591a936db30d5758e0652ab02fe32f85d8765340896600e/investor_agent-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "7b8c9a7c90e7c99d28e2340491a5b5bc870acb2e6b078e1bb745317501612249",
                "md5": "a9dd286fb7e4e1970579a355e4032e13",
                "sha256": "3b99b614ff102f2c960341bb4a4fbbc16802bd6bc66b00715bcd4c163378db98"
            },
            "downloads": -1,
            "filename": "investor_agent-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "a9dd286fb7e4e1970579a355e4032e13",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.12",
            "size": 45549,
            "upload_time": "2025-07-22T12:39:41",
            "upload_time_iso_8601": "2025-07-22T12:39:41.643022Z",
            "url": "https://files.pythonhosted.org/packages/7b/8c/9a7c90e7c99d28e2340491a5b5bc870acb2e6b078e1bb745317501612249/investor_agent-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-22 12:39:41",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "investor-agent"
}
        
Elapsed time: 0.51142s