iolsmp


Nameiolsmp JSON
Version 1.0.0 PyPI version JSON
download
home_page
SummaryLog linear model regression and dealing with zeros
upload_time2023-06-21 07:17:02
maintainer
docs_urlNone
authorOussama Elghodhben, Rami Znazen
requires_python
license
keywords log linear regression
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            The Zero-Inflated Log Linear Regression package provides a set of functions and utilities to handle zero-inflated cases in log linear regression models. It offers methods for estimating model parameters, calculating predicted values, and handling clustered data. This package is particularly useful when dealing with datasets where the dependent variable has excess zeros, allowing for more accurate and robust analysis of log linear regression models. It leverages the power of numpy, statsmodels, and pandas libraries to provide efficient and reliable computations for zero-inflated log linear regression analysis.

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "iolsmp",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "log linear,regression",
    "author": "Oussama Elghodhben, Rami Znazen",
    "author_email": "<oussama.elghodhben@telecom-paris.fr>",
    "download_url": "https://files.pythonhosted.org/packages/0e/4f/181ecc02129d300b799c881ff010eb5d96dc6ebfa527db5bd49553a9d995/iolsmp-1.0.0.tar.gz",
    "platform": null,
    "description": "The Zero-Inflated Log Linear Regression package provides a set of functions and utilities to handle zero-inflated cases in log linear regression models. It offers methods for estimating model parameters, calculating predicted values, and handling clustered data. This package is particularly useful when dealing with datasets where the dependent variable has excess zeros, allowing for more accurate and robust analysis of log linear regression models. It leverages the power of numpy, statsmodels, and pandas libraries to provide efficient and reliable computations for zero-inflated log linear regression analysis.\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Log linear model regression and dealing with zeros",
    "version": "1.0.0",
    "project_urls": null,
    "split_keywords": [
        "log linear",
        "regression"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ece27855ea21caa49f6ce6e8bbb8c2a85fcecf4b32660cd82fa9fecef1d0af60",
                "md5": "7a6922f5c3969e92cca608cdb8c60def",
                "sha256": "3dc748a17771edf5dba5d0a8719294452f0637b51a59f0e620069c0d1e9bf99a"
            },
            "downloads": -1,
            "filename": "iolsmp-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7a6922f5c3969e92cca608cdb8c60def",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 1502,
            "upload_time": "2023-06-21T07:17:00",
            "upload_time_iso_8601": "2023-06-21T07:17:00.699828Z",
            "url": "https://files.pythonhosted.org/packages/ec/e2/7855ea21caa49f6ce6e8bbb8c2a85fcecf4b32660cd82fa9fecef1d0af60/iolsmp-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0e4f181ecc02129d300b799c881ff010eb5d96dc6ebfa527db5bd49553a9d995",
                "md5": "a9cca06e55639eaa56929735eff43084",
                "sha256": "d5ec8fbf92d841216e1f04b67f65258e68baf85b4f06b497e0bd240688b9f722"
            },
            "downloads": -1,
            "filename": "iolsmp-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "a9cca06e55639eaa56929735eff43084",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 1556,
            "upload_time": "2023-06-21T07:17:02",
            "upload_time_iso_8601": "2023-06-21T07:17:02.358159Z",
            "url": "https://files.pythonhosted.org/packages/0e/4f/181ecc02129d300b799c881ff010eb5d96dc6ebfa527db5bd49553a9d995/iolsmp-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-06-21 07:17:02",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "iolsmp"
}
        
Elapsed time: 0.19481s