# IP Fabric Dynamic Attributes
Automation to create Attributes dynamically in IP Fabric.
## Overview
`ipf_dynamic_attributes` is a Python package designed to automate the creation and management of dynamic attributes in
IP Fabric environments. It provides a flexible configuration system for defining rules, filters, and attribute mappings,
enabling streamlined attribute synchronization and reporting.
## Features
* Define dynamic attribute rules using YAML, JSON, TOML or Python configuration.
* Support for static and calculated attribute values, including regex extraction and value mapping.
* Support for regex-based searching of device configs.
* Flexible filtering for inventory and device data.
* Default dry-run mode for safe testing.
* Creates a pandas DataFrame for easy data manipulation and reporting.
## Requirements
* Python 3.9+
* IP Fabric version 7.2 or higher
* IP Fabric SDK version 7.2 or higher
## Installation
To install the `ipf_dynamic_attributes` package, you can use pip:
```bash
pip install ipf_dynamic_attributes
```
If you would like to output reports in Excel format, you can also install the `xlsxwriter` package:
```bash
pip install ipf_dynamic_attributes[excel]
```
## Documentation
Please refer to the [IP Fabric Dynamic Attributes Documentation](https://docs.ipfabric.io/main/integrations/dynamic-attributes/)
for detailed usage instructions, configuration examples, and advanced features.
Raw data
{
"_id": null,
"home_page": "https://gitlab.com/ip-fabric/integrations/ipf-dynamic-attributes",
"name": "ipf_dynamic_attributes",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.9",
"maintainer_email": null,
"keywords": "ipfabric, ip-fabric, community-fabric",
"author": "Solution Architecture",
"author_email": "solution.architecture@ipfabric.io",
"download_url": "https://files.pythonhosted.org/packages/c7/0c/de0ec46b8ee3808d1119e94bf50c6e8d0cc67754bd1900a274e8e78b2c04/ipf_dynamic_attributes-1.2.1.tar.gz",
"platform": null,
"description": "# IP Fabric Dynamic Attributes\n\nAutomation to create Attributes dynamically in IP Fabric.\n\n## Overview\n\n`ipf_dynamic_attributes` is a Python package designed to automate the creation and management of dynamic attributes in \nIP Fabric environments. It provides a flexible configuration system for defining rules, filters, and attribute mappings, \nenabling streamlined attribute synchronization and reporting.\n\n## Features\n\n* Define dynamic attribute rules using YAML, JSON, TOML or Python configuration.\n* Support for static and calculated attribute values, including regex extraction and value mapping.\n* Support for regex-based searching of device configs.\n* Flexible filtering for inventory and device data. \n* Default dry-run mode for safe testing.\n* Creates a pandas DataFrame for easy data manipulation and reporting.\n\n## Requirements\n\n* Python 3.9+\n* IP Fabric version 7.2 or higher\n* IP Fabric SDK version 7.2 or higher\n\n## Installation\n\nTo install the `ipf_dynamic_attributes` package, you can use pip:\n\n```bash\npip install ipf_dynamic_attributes\n```\n\nIf you would like to output reports in Excel format, you can also install the `xlsxwriter` package:\n\n```bash\npip install ipf_dynamic_attributes[excel]\n```\n\n## Documentation\n\nPlease refer to the [IP Fabric Dynamic Attributes Documentation](https://docs.ipfabric.io/main/integrations/dynamic-attributes/)\nfor detailed usage instructions, configuration examples, and advanced features.\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Automation to Create Dynamic Attributes in IP Fabric",
"version": "1.2.1",
"project_urls": {
"Changelog": "https://gitlab.com/ip-fabric/integrations/ipf-dynamic-attributes/-/blob/main/CHANGELOG.md",
"Documentation": "https://docs.ipfabric.io/main/integrations/dynamic-attributes/",
"Homepage": "https://gitlab.com/ip-fabric/integrations/ipf-dynamic-attributes",
"IP Fabric": "https://ipfabric.io/",
"Repository": "https://gitlab.com/ip-fabric/integrations/ipf-dynamic-attributes"
},
"split_keywords": [
"ipfabric",
" ip-fabric",
" community-fabric"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "ee450054d6c6905a26794733841038aa060c553eee2ec28adf2f7ebd08a92479",
"md5": "3b54cc70cfa996825e640b8c73564e5d",
"sha256": "ca6a1df12ade693a33f8a22e6321d7813ec0ab83ee708db167c0bfb3c2515d8d"
},
"downloads": -1,
"filename": "ipf_dynamic_attributes-1.2.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "3b54cc70cfa996825e640b8c73564e5d",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.9",
"size": 21593,
"upload_time": "2025-07-14T15:39:18",
"upload_time_iso_8601": "2025-07-14T15:39:18.783351Z",
"url": "https://files.pythonhosted.org/packages/ee/45/0054d6c6905a26794733841038aa060c553eee2ec28adf2f7ebd08a92479/ipf_dynamic_attributes-1.2.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c70cde0ec46b8ee3808d1119e94bf50c6e8d0cc67754bd1900a274e8e78b2c04",
"md5": "dacf433ad32bd0faf37b19c831285bdd",
"sha256": "3b145470fdb571297bcfa259b65adb4ca22129843bb62fc778cebfc3104ddfb7"
},
"downloads": -1,
"filename": "ipf_dynamic_attributes-1.2.1.tar.gz",
"has_sig": false,
"md5_digest": "dacf433ad32bd0faf37b19c831285bdd",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.9",
"size": 17198,
"upload_time": "2025-07-14T15:39:19",
"upload_time_iso_8601": "2025-07-14T15:39:19.844108Z",
"url": "https://files.pythonhosted.org/packages/c7/0c/de0ec46b8ee3808d1119e94bf50c6e8d0cc67754bd1900a274e8e78b2c04/ipf_dynamic_attributes-1.2.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-14 15:39:19",
"github": false,
"gitlab": true,
"bitbucket": false,
"codeberg": false,
"gitlab_user": "ip-fabric",
"gitlab_project": "integrations",
"lcname": "ipf_dynamic_attributes"
}