ipgs


Nameipgs JSON
Version 1.2.6 PyPI version JSON
download
home_pageNone
SummaryInteractive ANIMATED progress bar for Jupyter notebook projects
upload_time2025-09-11 16:34:03
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseMIT
keywords progressbar jupyter notebook animated ipython
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # iPgs – Interactive Animated Progress Bar for Jupyter

**iPgs** provides an interactive and animated progress bar designed for Jupyter Notebook and Google Colab environments. It enables clear visualization of training or processing progress, including nested loops such as epochs and batches, with automatic computation of estimated completion time (ETA).

This package is **framework-agnostic** and **dependency-free**, making it lightweight and easy to integrate into any Python workflow.

---

## Key Highlights

- **Interactive and Animated**: Real-time visual feedback enhances comprehension of long-running tasks, making iterative processes like model training more intuitive.  
- **Nested Progress Tracking**: Simultaneously displays epoch-level (outer) and batch-level (inner) progress, providing a granular view of the workflow.  
- **Automatic ETA Calculation**: Continuously estimates remaining time for both epochs and batches, improving planning and monitoring.  
- **Framework-Agnostic**: Fully compatible with PyTorch, TensorFlow, Keras, NumPy arrays, Python lists, or any iterable—no modifications required.  
- **Dependency-Free**: Relies only on built-in Python libraries and IPython display functionality, ensuring easy installation and minimal overhead.  
- **Flexible Usage**: Works seamlessly with both DataLoader-style iterables and standard Python loops, supporting diverse workflows.  

---

## Installation

```bash
pip install ipgs
```

## Usage Example
```
from ipgs import iPgs

for epoch_idx, batch_idx, batch in iPgs(loader, num_epochs=5, desc="Training"):
    bx, by = batch
    # training step
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "ipgs",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "progressbar, jupyter, notebook, animated, ipython",
    "author": null,
    "author_email": "Abolfazl Mohammadpour <Mohampouraz@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/a8/75/a6735625ed6251e7b209b10e56318d127d815dc131634d835924feda831a/ipgs-1.2.6.tar.gz",
    "platform": null,
    "description": "# iPgs \u2013 Interactive Animated Progress Bar for Jupyter\r\n\r\n**iPgs** provides an interactive and animated progress bar designed for Jupyter Notebook and Google Colab environments. It enables clear visualization of training or processing progress, including nested loops such as epochs and batches, with automatic computation of estimated completion time (ETA).\r\n\r\nThis package is **framework-agnostic** and **dependency-free**, making it lightweight and easy to integrate into any Python workflow.\r\n\r\n---\r\n\r\n## Key Highlights\r\n\r\n- **Interactive and Animated**: Real-time visual feedback enhances comprehension of long-running tasks, making iterative processes like model training more intuitive.  \r\n- **Nested Progress Tracking**: Simultaneously displays epoch-level (outer) and batch-level (inner) progress, providing a granular view of the workflow.  \r\n- **Automatic ETA Calculation**: Continuously estimates remaining time for both epochs and batches, improving planning and monitoring.  \r\n- **Framework-Agnostic**: Fully compatible with PyTorch, TensorFlow, Keras, NumPy arrays, Python lists, or any iterable\u2014no modifications required.  \r\n- **Dependency-Free**: Relies only on built-in Python libraries and IPython display functionality, ensuring easy installation and minimal overhead.  \r\n- **Flexible Usage**: Works seamlessly with both DataLoader-style iterables and standard Python loops, supporting diverse workflows.  \r\n\r\n---\r\n\r\n## Installation\r\n\r\n```bash\r\npip install ipgs\r\n```\r\n\r\n## Usage Example\r\n```\r\nfrom ipgs import iPgs\r\n\r\nfor epoch_idx, batch_idx, batch in iPgs(loader, num_epochs=5, desc=\"Training\"):\r\n    bx, by = batch\r\n    # training step\r\n```\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Interactive ANIMATED progress bar for Jupyter notebook projects",
    "version": "1.2.6",
    "project_urls": {
        "BugTracker": "https://github.com/mohampouraz/iutils/issues",
        "Documentation": "https://github.com/mohampouraz/iutils/#readme",
        "Homepage": "https://pypi.org/project/ipgs/",
        "Repository": "https://github.com/mohampouraz/iutils/"
    },
    "split_keywords": [
        "progressbar",
        " jupyter",
        " notebook",
        " animated",
        " ipython"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "d425d4c9415092e42603e368e5c03e813fa4d451ee91bca6ca03600fb1aa9ee5",
                "md5": "1e4450af27617e054104a88ee4bfe1bb",
                "sha256": "ff2f6f5310772f376e6f3aa97a9e124fabeee9d8805365f33b360aa305b7f02c"
            },
            "downloads": -1,
            "filename": "ipgs-1.2.6-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "1e4450af27617e054104a88ee4bfe1bb",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 5426,
            "upload_time": "2025-09-11T16:34:02",
            "upload_time_iso_8601": "2025-09-11T16:34:02.217855Z",
            "url": "https://files.pythonhosted.org/packages/d4/25/d4c9415092e42603e368e5c03e813fa4d451ee91bca6ca03600fb1aa9ee5/ipgs-1.2.6-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "a875a6735625ed6251e7b209b10e56318d127d815dc131634d835924feda831a",
                "md5": "5f3d236fe68a6fe3b4ff6c1f234e0832",
                "sha256": "3b29c0cd4aa890c26f9a8b2fb69b81953838e86d4e8c3c0ff09ef307aaaf8e9c"
            },
            "downloads": -1,
            "filename": "ipgs-1.2.6.tar.gz",
            "has_sig": false,
            "md5_digest": "5f3d236fe68a6fe3b4ff6c1f234e0832",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 5082,
            "upload_time": "2025-09-11T16:34:03",
            "upload_time_iso_8601": "2025-09-11T16:34:03.202657Z",
            "url": "https://files.pythonhosted.org/packages/a8/75/a6735625ed6251e7b209b10e56318d127d815dc131634d835924feda831a/ipgs-1.2.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-11 16:34:03",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "mohampouraz",
    "github_project": "iutils",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "ipgs"
}
        
Elapsed time: 2.92948s