isarsoft-model-utility


Nameisarsoft-model-utility JSON
Version 0.1.0 PyPI version JSON
download
home_pageNone
SummaryIsarsoft Model Export Toolkit - Export models for Perception
upload_time2025-07-22 11:37:37
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseApache License 2.0
keywords onnx object-detection export machine-learning perception
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Isarsoft Model Utility

A command-line utility for exporting object detection models to ONNX format for Isarsoft Perception, complete with metadata generation and optional packaging.

## Features

* Convert PyTorch `.pt` models from RFDETR to ONNX
* Embed metadata: class labels, model description, company attribution
* Options to anonymize or georeference specific classes
* Support for custom input image sizes
* Generate a thumbnail for frontend display (optional)
* Package outputs into a ZIP archive (optional)
* Verbose logging for debugging and audit trails

## Requirements

* Python 3.10 or later

## Installation

```bash

# Create a conda environment (recommended)
conda create -n isarsoft-export python=3.10 -y
conda activate isarsoft-export

# Install the package
pip install isarsoft-model-utility
```

## Usage

```bash
isarsoft-export --model <MODEL_PATH> \
                --output <OUTPUT_DIR> \
                --classes <CLASS_LIST> 
                --model-name <MODEL>
```

All flags and options are described below.

### Required Arguments

| Flag        | Shortcut | Description                                                   |
| ----------- | -------- | ------------------------------------------------------------- |
| `--model`   | `-m`     | Path to model file (`.pt`) or use `default` for pretrained   |
| `--output`  | `-o`     | Directory where exported files will be saved                  |
| `--classes` | `-c`     | Comma-separated list of class names (e.g., `person,car,bike`) |


### Optional Arguments

| Flag                     | Shortcut | Type    | Default                          | Description                                                 |
| ------------------------ | -------- | ------- | -------------------------------- | ----------------------------------------------------------- |
| `--model-name`           | `-n`     | String  | `rfdetr`                         | Model Name for the Frontend                                 |
| `--description`          | `-d`     | String  | `Object detection model` | Model description for metadata                              |
| `--company`              |          | String  | `Generated`                      | Company name for metadata                                   |
| `--anonymize-classes`    |          | String  | None                             | Comma-separated class indices to anonymize (e.g., `0,1`)    |
| `--georeference-classes` |          | String  | None                             | Comma-separated class indices to georeference (e.g., `2,3`) |
| `--imgsz`                |          | Integer | `560`                            | Input image size for export                                 |
| `--thumbnail`            |          | String  | None                             | Location of thumbnail for Frontend                          |
| `--no-zip`               |          | Flag    | Disabled                         | Skip creating zip package                                   |
| `--verbose`              | `-v`     | Flag    | Disabled                         | Enable verbose logging                                      |

### Examples

Basic export with class names:

```bash
isarsoft-export \
  --model model.pt \
  --output ./exported \
  --classes person,car,bike
  --model-name custom
```

Export with custom metadata and class options:

```bash
isarsoft-export \
  --model model.pt \
  --output ./exported \
  --classes person,vehicle,animal \
  --description "Multi-class detector" \
  --company "MyCompany" \
  --anonymize-classes 0 \
  --georeference-classes 1,2 \
  --model-name custom
```

Export with custom image size and thumbnail:

```bash
isarsoft-export \
  --model model.pt \
  --output ./exported \
  --classes person \
  --imgsz 728 \
  --thumbnail ./thumbnail.svg \
  --model-name custom
```

## Exit Codes

* `0` on successful export
* `1` on failure (errors are printed; use `--verbose` for traceback)

## Logging

Verbose mode (`--verbose`) outputs detailed logs to the console, including validation steps and stack traces on error.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "isarsoft-model-utility",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "onnx, object-detection, export, machine-learning, perception",
    "author": null,
    "author_email": "Isarsoft <support@isarsoft.com>",
    "download_url": "https://files.pythonhosted.org/packages/fd/b0/023aa5c47b0aff2dac1c9ec21d64fcd53223d91af22f1070490d0cbf4eb9/isarsoft_model_utility-0.1.0.tar.gz",
    "platform": null,
    "description": "# Isarsoft Model Utility\n\nA command-line utility for exporting object detection models to ONNX format for Isarsoft Perception, complete with metadata generation and optional packaging.\n\n## Features\n\n* Convert PyTorch `.pt` models from RFDETR to ONNX\n* Embed metadata: class labels, model description, company attribution\n* Options to anonymize or georeference specific classes\n* Support for custom input image sizes\n* Generate a thumbnail for frontend display (optional)\n* Package outputs into a ZIP archive (optional)\n* Verbose logging for debugging and audit trails\n\n## Requirements\n\n* Python 3.10 or later\n\n## Installation\n\n```bash\n\n# Create a conda environment (recommended)\nconda create -n isarsoft-export python=3.10 -y\nconda activate isarsoft-export\n\n# Install the package\npip install isarsoft-model-utility\n```\n\n## Usage\n\n```bash\nisarsoft-export --model <MODEL_PATH> \\\n                --output <OUTPUT_DIR> \\\n                --classes <CLASS_LIST> \n                --model-name <MODEL>\n```\n\nAll flags and options are described below.\n\n### Required Arguments\n\n| Flag        | Shortcut | Description                                                   |\n| ----------- | -------- | ------------------------------------------------------------- |\n| `--model`   | `-m`     | Path to model file (`.pt`) or use `default` for pretrained   |\n| `--output`  | `-o`     | Directory where exported files will be saved                  |\n| `--classes` | `-c`     | Comma-separated list of class names (e.g., `person,car,bike`) |\n\n\n### Optional Arguments\n\n| Flag                     | Shortcut | Type    | Default                          | Description                                                 |\n| ------------------------ | -------- | ------- | -------------------------------- | ----------------------------------------------------------- |\n| `--model-name`           | `-n`     | String  | `rfdetr`                         | Model Name for the Frontend                                 |\n| `--description`          | `-d`     | String  | `Object detection model` | Model description for metadata                              |\n| `--company`              |          | String  | `Generated`                      | Company name for metadata                                   |\n| `--anonymize-classes`    |          | String  | None                             | Comma-separated class indices to anonymize (e.g., `0,1`)    |\n| `--georeference-classes` |          | String  | None                             | Comma-separated class indices to georeference (e.g., `2,3`) |\n| `--imgsz`                |          | Integer | `560`                            | Input image size for export                                 |\n| `--thumbnail`            |          | String  | None                             | Location of thumbnail for Frontend                          |\n| `--no-zip`               |          | Flag    | Disabled                         | Skip creating zip package                                   |\n| `--verbose`              | `-v`     | Flag    | Disabled                         | Enable verbose logging                                      |\n\n### Examples\n\nBasic export with class names:\n\n```bash\nisarsoft-export \\\n  --model model.pt \\\n  --output ./exported \\\n  --classes person,car,bike\n  --model-name custom\n```\n\nExport with custom metadata and class options:\n\n```bash\nisarsoft-export \\\n  --model model.pt \\\n  --output ./exported \\\n  --classes person,vehicle,animal \\\n  --description \"Multi-class detector\" \\\n  --company \"MyCompany\" \\\n  --anonymize-classes 0 \\\n  --georeference-classes 1,2 \\\n  --model-name custom\n```\n\nExport with custom image size and thumbnail:\n\n```bash\nisarsoft-export \\\n  --model model.pt \\\n  --output ./exported \\\n  --classes person \\\n  --imgsz 728 \\\n  --thumbnail ./thumbnail.svg \\\n  --model-name custom\n```\n\n## Exit Codes\n\n* `0` on successful export\n* `1` on failure (errors are printed; use `--verbose` for traceback)\n\n## Logging\n\nVerbose mode (`--verbose`) outputs detailed logs to the console, including validation steps and stack traces on error.\n",
    "bugtrack_url": null,
    "license": "Apache License 2.0",
    "summary": "Isarsoft Model Export Toolkit - Export models for Perception",
    "version": "0.1.0",
    "project_urls": {
        "Homepage": "https://isarsoft.com",
        "Issues": "https://gitlab.com/isarsoft/isarsoft-model-utility/issues",
        "Repository": "https://gitlab.com/isarsoft/isarsoft-model-utility"
    },
    "split_keywords": [
        "onnx",
        " object-detection",
        " export",
        " machine-learning",
        " perception"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "86e200d3517e52ddc60c2ea6966c9f2f9b17a116883e8d18ed82403cc46c2414",
                "md5": "a00580f04b1719d4a6297d886136c171",
                "sha256": "5b3679222738d3f71c372a33ea0edf473a0cd43de96dfa0f6e33f3dd6be0a72d"
            },
            "downloads": -1,
            "filename": "isarsoft_model_utility-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "a00580f04b1719d4a6297d886136c171",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 1047528,
            "upload_time": "2025-07-22T11:37:35",
            "upload_time_iso_8601": "2025-07-22T11:37:35.672466Z",
            "url": "https://files.pythonhosted.org/packages/86/e2/00d3517e52ddc60c2ea6966c9f2f9b17a116883e8d18ed82403cc46c2414/isarsoft_model_utility-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "fdb0023aa5c47b0aff2dac1c9ec21d64fcd53223d91af22f1070490d0cbf4eb9",
                "md5": "b81eae0d3d131aaa571d4de1af721744",
                "sha256": "354dfa4e73bbe5626def5fd8ecf95827ea3213db49b6ef0e6184da5b7b2a2226"
            },
            "downloads": -1,
            "filename": "isarsoft_model_utility-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "b81eae0d3d131aaa571d4de1af721744",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 1048475,
            "upload_time": "2025-07-22T11:37:37",
            "upload_time_iso_8601": "2025-07-22T11:37:37.305112Z",
            "url": "https://files.pythonhosted.org/packages/fd/b0/023aa5c47b0aff2dac1c9ec21d64fcd53223d91af22f1070490d0cbf4eb9/isarsoft_model_utility-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-22 11:37:37",
    "github": false,
    "gitlab": true,
    "bitbucket": false,
    "codeberg": false,
    "gitlab_user": "isarsoft",
    "gitlab_project": "isarsoft-model-utility",
    "lcname": "isarsoft-model-utility"
}
        
Elapsed time: 2.19375s