Name | itembed JSON |
Version |
0.5.1
JSON |
| download |
home_page | |
Summary | word2vec for itemsets |
upload_time | 2024-02-28 10:24:45 |
maintainer | |
docs_url | None |
author | |
requires_python | >=3.7 |
license | MIT License |
keywords |
itemset
word2vec
embedding
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# `itembed` — Item embeddings
This is yet another variation of the well-known word2vec method, proposed by Mikolov et al., applied to unordered sequences, which are commonly referred as itemsets.
The contribution of `itembed` is twofold:
1. Modifying the base algorithm to handle unordered sequences, which has an impact on the definition of context windows;
2. Using the two embedding sets introduced in word2vec for supervised learning.
A similar philosophy is described by Wu et al. in StarSpace and by Barkan and Koenigstein in item2vec.
`itembed` uses Numba to achieve high performances.
## Getting started
Install from [PyPI](https://pypi.org/project/itembed/):
```
pip install itembed
```
Or install from source, to ensure latest version:
```
pip install git+https://github.com/sdsc-innovation/itembed.git
```
Please refer to the [documentation](http://sdsc-innovation.github.io/itembed) for detailed explanations and examples.
Raw data
{
"_id": null,
"home_page": "",
"name": "itembed",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "itemset,word2vec,embedding",
"author": "",
"author_email": "Johan Berdat <jojolebarjos@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/f3/2f/9eff62087b8ce9306fdab99f4ac4be8814162e2f1f1e60a4c3a376ebdd50/itembed-0.5.1.tar.gz",
"platform": null,
"description": "# `itembed` \u2014 Item embeddings\n\nThis is yet another variation of the well-known word2vec method, proposed by Mikolov et al., applied to unordered sequences, which are commonly referred as itemsets.\nThe contribution of `itembed` is twofold:\n\n 1. Modifying the base algorithm to handle unordered sequences, which has an impact on the definition of context windows;\n 2. Using the two embedding sets introduced in word2vec for supervised learning.\n\nA similar philosophy is described by Wu et al. in StarSpace and by Barkan and Koenigstein in item2vec.\n`itembed` uses Numba to achieve high performances.\n\n\n## Getting started\n\nInstall from [PyPI](https://pypi.org/project/itembed/):\n\n```\npip install itembed\n```\n\nOr install from source, to ensure latest version:\n\n```\npip install git+https://github.com/sdsc-innovation/itembed.git\n```\n\nPlease refer to the [documentation](http://sdsc-innovation.github.io/itembed) for detailed explanations and examples.\n",
"bugtrack_url": null,
"license": "MIT License",
"summary": "word2vec for itemsets",
"version": "0.5.1",
"project_urls": {
"Documentation": "https://sdsc-innovation.github.io/itembed/",
"Issues": "https://github.com/sdsc-innovation/itembed/issues",
"Repository": "https://github.com/sdsc-innovation/itembed.git"
},
"split_keywords": [
"itemset",
"word2vec",
"embedding"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "f23540e2b3fd9a74019ab5bc3e7f26e1dfa1c8beb34be16df13f163c84b0cc0e",
"md5": "be0216cf6b9921a95f5a2daa9ca8d4a9",
"sha256": "990b3b769620925890e79c9eb1bc85f7c3f3eb11b1e67c2e9190824bd3ea6dbb"
},
"downloads": -1,
"filename": "itembed-0.5.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "be0216cf6b9921a95f5a2daa9ca8d4a9",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 9219,
"upload_time": "2024-02-28T10:24:42",
"upload_time_iso_8601": "2024-02-28T10:24:42.640166Z",
"url": "https://files.pythonhosted.org/packages/f2/35/40e2b3fd9a74019ab5bc3e7f26e1dfa1c8beb34be16df13f163c84b0cc0e/itembed-0.5.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f32f9eff62087b8ce9306fdab99f4ac4be8814162e2f1f1e60a4c3a376ebdd50",
"md5": "7b964e9b6d412e791b6672c535dad5bd",
"sha256": "8ced138c608f9125b1f1b5d0f74483f5092c156ef2d3eda3efd5d48479231597"
},
"downloads": -1,
"filename": "itembed-0.5.1.tar.gz",
"has_sig": false,
"md5_digest": "7b964e9b6d412e791b6672c535dad5bd",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 9729,
"upload_time": "2024-02-28T10:24:45",
"upload_time_iso_8601": "2024-02-28T10:24:45.112437Z",
"url": "https://files.pythonhosted.org/packages/f3/2f/9eff62087b8ce9306fdab99f4ac4be8814162e2f1f1e60a4c3a376ebdd50/itembed-0.5.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-02-28 10:24:45",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "sdsc-innovation",
"github_project": "itembed",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "itembed"
}