iva-order-selection


Nameiva-order-selection JSON
Version 0.0.2 PyPI version JSON
download
home_pagehttps://mlsp.umbc.edu/Siddique
SummaryImplementation of CMI-IVA
upload_time2023-05-19 14:28:38
maintainer
docs_urlNone
authorM. A. B. S. Akhonda
requires_python>=3.6
licenseLICENSE
keywords iva model order selection multiset analysis common and distinct
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Comple Model Identification using Independent Vector Analysis (CMI-IVA)

This package contains the Python versions of CMI-IVA [1].

For CMI-IVA please visit:
- https://mlsp.umbc.edu/Siddique

For IVA please visit:
- http://mlsp.umbc.edu/jointBSS_introduction.html
- https://github.com/SSTGroup/independent_vector_analysis



Installing iva_order_selection	

	pip install independent_vector_analysis

####################################################

Pre-requisite:

Installing independent_vector_analysis

The only pre-requisite is to have **Python 3** (>= version 3.6) installed.
The iva package can be installed with

    pip install independent_vector_analysis

Required third party packages will automatically be installed.



################################################### 

First, the imports:

    import numpy as np
    from independent_vector_analysis import *
    from independent_vector_analysis.data_generation import MGGD_generation

Example:
	N = 10 # No. Sources
	T = 1000 # No. Samples
	K = 15 # No. datasets (subjects)
	rho = [0.9,0.8,0.7]

	# Common and distinct source generation
	source_mat = np.zeros((N,T,K))
	scv_cov_mat = np.zeros((K,K,N))

	# Common sources across K datasets
	for i in range(len(rho)):
		(temp,scv_cov_mat[:,:,i]) = MGGD_generation(T,K,'uniform',rho[i],0.5)
		source_mat[i,:,:] = temp.T

	# Common sources with sub-group structure across K datasets
	(temp,scv_cov_mat[:,:,len(rho)]) = MGGD_generation(T,K,'block',{'val': 0.01, 'blocks': [(0.9, 0, 3), (0.01, 3,14)]},0.5)
	source_mat[len(rho),:,:] = temp.T

	# Distinct sources across K datasets
	for i in range(len(rho)+1,N,1):
		(temp,scv_cov_mat[:,:,i]) = MGGD_generation(T,K,'ar',0.01,0.5)
		source_mat[i,:,:] = temp.T


	# Create datasets by mixing with randomly generated mixing matrices
	mix_mat = np.random.randn(N,N,K)
	data_mat = np.zeros((N,T,K))
	for k in range(K):
		data_mat[:,:,k] = mix_mat[:,:,k]@source_mat[:,:,k]

	# Apply CMI-IVA
	iva_results, Order, Corr_struct = order_selection_iva(data_mat)

	 Output:
        iva_results: tuple
             -iva_results[0] = W : np.ndarray
                 The estimated demixing matrices of dimensions N x N x K so that ideally
                 W[k] @ A[k] = P @ D[k], where P is any arbitrary permutation matrix and D[k] is any
                 diagonal invertible (scaling) matrix. Note that P is common to all datasets. This is
                 to indicate that the local permutation ambiguity between dependent sources
                 across datasets should ideally be resolved by IVA.

             -iva_results[1] = cost : float
                 The cost for each iteration

             -iva_results[2] = Sigma_N : np.ndarray
                 Covariance matrix of each source component vector, with dimensions K x K x N

             -iva_results[3] = isi : float

        Order: dict
             -'mdl': int 
                  Common order estimated by the minimum description length (MDL) criteria 
             -'aic': int
                  Common order estimated by the akaike information criterion (AIC)
             -'mdl_results': np.ndarray
                  Number of subgroup in each SCV estimated by MDL (N)
             -'aic_results': np.ndarray
                  Number of subgroup in each SCV estimated by AIC (N)

        Corr_struct: dict
            -'eig': np.ndarray
                  Estimated eigenvalues for each SCV (K x N)
            -'eig_str': np.ndarray
                  Estimated correlation structire in each SCV (K x K x N)

## Contact

akhondams@nih.gov or mo32@umbc.edu

## Citing

If you use this package in an academic paper, please cite [1].

    @INPROCEEDINGS{9523414,
    author={Akhonda, M. A. B. S. and Gabrielson, Ben and Calhoun, Vince D. and Adali, Tülay},
    booktitle={2021 IEEE Data Science and Learning Workshop (DSLW)}, 
    title={Complete Model Identification Using Independent Vector Analysis: Application to the Fusion of Task FMRI Data}, 
    year={2021},
    volume={},
    number={},
    pages={1-6},
    doi={10.1109/DSLW51110.2021.9523414}}


[1]  M. A. B. S. Akhonda, B. Gabrielson, V. D. Calhoun and T. Adali,"Complete Model Identification Using Independent Vector Analysis: Application to the Fusion of Task FMRI Data," 2021 IEEE Data Science and Learning Workshop (DSLW), Toronto, ON, Canada, 2021, pp. 1-6, doi: 10.1109/DSLW51110.2021.9523414.




            

Raw data

            {
    "_id": null,
    "home_page": "https://mlsp.umbc.edu/Siddique",
    "name": "iva-order-selection",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "iva,model order selection,multiset analysis,common and distinct",
    "author": "M. A. B. S. Akhonda",
    "author_email": "akhondams@nih.gov",
    "download_url": "https://files.pythonhosted.org/packages/70/85/a8b67086bb6b863ca7edeb15dac89c3b8aa6699b4b39cae9ffdf8e155bc7/iva_order_selection-0.0.2.tar.gz",
    "platform": null,
    "description": "# Comple Model Identification using Independent Vector Analysis (CMI-IVA)\n\nThis package contains the Python versions of CMI-IVA [1].\n\nFor CMI-IVA please visit:\n- https://mlsp.umbc.edu/Siddique\n\nFor IVA please visit:\n- http://mlsp.umbc.edu/jointBSS_introduction.html\n- https://github.com/SSTGroup/independent_vector_analysis\n\n\n\nInstalling iva_order_selection\t\n\n\tpip install independent_vector_analysis\n\n####################################################\n\nPre-requisite:\n\nInstalling independent_vector_analysis\n\nThe only pre-requisite is to have **Python 3** (>= version 3.6) installed.\nThe iva package can be installed with\n\n    pip install independent_vector_analysis\n\nRequired third party packages will automatically be installed.\n\n\n\n################################################### \n\nFirst, the imports:\n\n    import numpy as np\n    from independent_vector_analysis import *\n    from independent_vector_analysis.data_generation import MGGD_generation\n\nExample:\n\tN = 10 # No. Sources\n\tT = 1000 # No. Samples\n\tK = 15 # No. datasets (subjects)\n\trho = [0.9,0.8,0.7]\n\n\t# Common and distinct source generation\n\tsource_mat = np.zeros((N,T,K))\n\tscv_cov_mat = np.zeros((K,K,N))\n\n\t# Common sources across K datasets\n\tfor i in range(len(rho)):\n\t\t(temp,scv_cov_mat[:,:,i]) = MGGD_generation(T,K,'uniform',rho[i],0.5)\n\t\tsource_mat[i,:,:] = temp.T\n\n\t# Common sources with sub-group structure across K datasets\n\t(temp,scv_cov_mat[:,:,len(rho)]) = MGGD_generation(T,K,'block',{'val': 0.01, 'blocks': [(0.9, 0, 3), (0.01, 3,14)]},0.5)\n\tsource_mat[len(rho),:,:] = temp.T\n\n\t# Distinct sources across K datasets\n\tfor i in range(len(rho)+1,N,1):\n\t\t(temp,scv_cov_mat[:,:,i]) = MGGD_generation(T,K,'ar',0.01,0.5)\n\t\tsource_mat[i,:,:] = temp.T\n\n\n\t# Create datasets by mixing with randomly generated mixing matrices\n\tmix_mat = np.random.randn(N,N,K)\n\tdata_mat = np.zeros((N,T,K))\n\tfor k in range(K):\n\t\tdata_mat[:,:,k] = mix_mat[:,:,k]@source_mat[:,:,k]\n\n\t# Apply CMI-IVA\n\tiva_results, Order, Corr_struct = order_selection_iva(data_mat)\n\n\t Output:\n        iva_results: tuple\n             -iva_results[0] = W : np.ndarray\n                 The estimated demixing matrices of dimensions N x N x K so that ideally\n                 W[k] @ A[k] = P @ D[k], where P is any arbitrary permutation matrix and D[k] is any\n                 diagonal invertible (scaling) matrix. Note that P is common to all datasets. This is\n                 to indicate that the local permutation ambiguity between dependent sources\n                 across datasets should ideally be resolved by IVA.\n\n             -iva_results[1] = cost : float\n                 The cost for each iteration\n\n             -iva_results[2] = Sigma_N : np.ndarray\n                 Covariance matrix of each source component vector, with dimensions K x K x N\n\n             -iva_results[3] = isi : float\n\n        Order: dict\n             -'mdl': int \n                  Common order estimated by the minimum description length (MDL) criteria \n             -'aic': int\n                  Common order estimated by the akaike information criterion (AIC)\n             -'mdl_results': np.ndarray\n                  Number of subgroup in each SCV estimated by MDL (N)\n             -'aic_results': np.ndarray\n                  Number of subgroup in each SCV estimated by AIC (N)\n\n        Corr_struct: dict\n            -'eig': np.ndarray\n                  Estimated eigenvalues for each SCV (K x N)\n            -'eig_str': np.ndarray\n                  Estimated correlation structire in each SCV (K x K x N)\n\n## Contact\n\nakhondams@nih.gov or mo32@umbc.edu\n\n## Citing\n\nIf you use this package in an academic paper, please cite [1].\n\n    @INPROCEEDINGS{9523414,\n    author={Akhonda, M. A. B. S. and Gabrielson, Ben and Calhoun, Vince D. and Adali, T\u00c3\u00bclay},\n    booktitle={2021 IEEE Data Science and Learning Workshop (DSLW)}, \n    title={Complete Model Identification Using Independent Vector Analysis: Application to the Fusion of Task FMRI Data}, \n    year={2021},\n    volume={},\n    number={},\n    pages={1-6},\n    doi={10.1109/DSLW51110.2021.9523414}}\n\n\n[1]  M. A. B. S. Akhonda, B. Gabrielson, V. D. Calhoun and T. Adali,\"Complete Model Identification Using Independent Vector Analysis: Application to the Fusion of Task FMRI Data,\" 2021 IEEE Data Science and Learning Workshop (DSLW), Toronto, ON, Canada, 2021, pp. 1-6, doi: 10.1109/DSLW51110.2021.9523414.\n\n\n\n",
    "bugtrack_url": null,
    "license": "LICENSE",
    "summary": "Implementation of CMI-IVA",
    "version": "0.0.2",
    "project_urls": {
        "Homepage": "https://mlsp.umbc.edu/Siddique"
    },
    "split_keywords": [
        "iva",
        "model order selection",
        "multiset analysis",
        "common and distinct"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "171de074fd0f3c21a813e40ff0e96ed4a81d51ca7c24be58c884f71aff159b76",
                "md5": "d79ff4a85971529f771493cfd4591451",
                "sha256": "69399bf1d14b2da08de21b0ec1d7479a5819beeeea6d435857883eb15038da88"
            },
            "downloads": -1,
            "filename": "iva_order_selection-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d79ff4a85971529f771493cfd4591451",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 6437,
            "upload_time": "2023-05-19T14:28:36",
            "upload_time_iso_8601": "2023-05-19T14:28:36.902077Z",
            "url": "https://files.pythonhosted.org/packages/17/1d/e074fd0f3c21a813e40ff0e96ed4a81d51ca7c24be58c884f71aff159b76/iva_order_selection-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7085a8b67086bb6b863ca7edeb15dac89c3b8aa6699b4b39cae9ffdf8e155bc7",
                "md5": "2dcc993c51aa22efeff07204b0729382",
                "sha256": "7f020e6152ef5045f23d21bb2cd1281c83d4ddafa09f9069a289ab062f649a74"
            },
            "downloads": -1,
            "filename": "iva_order_selection-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "2dcc993c51aa22efeff07204b0729382",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 5284,
            "upload_time": "2023-05-19T14:28:38",
            "upload_time_iso_8601": "2023-05-19T14:28:38.675252Z",
            "url": "https://files.pythonhosted.org/packages/70/85/a8b67086bb6b863ca7edeb15dac89c3b8aa6699b4b39cae9ffdf8e155bc7/iva_order_selection-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-05-19 14:28:38",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "iva-order-selection"
}
        
Elapsed time: 0.07323s