javiche


Namejaviche JSON
Version 0.0.6 PyPI version JSON
download
home_pagehttps://github.com/Jan-David-Black/javiche
SummaryA JAX wrapper around ceviche to make interoperability easier. In the future it might make sense to update ceviche itself to use JAX internally.
upload_time2023-02-09 23:44:51
maintainer
docs_urlNone
authorJan David Fischbach
requires_python>=3.7
licenseApache Software License 2.0
keywords nbdev jupyter notebook python ceviche fdtd inverse-design
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            javiche
================

<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->

Small package to enable using ceviche with a JAX optimizer easily.

## Install

*This package is not yet published. As soon as it is install with:*

``` sh
pip install javiche
```

or

``` sh
conda install javiche
```

## How to use

Import the decorator

``` python
from javiche import jaxit
```

decorate your function (will be differentiated using ceviches jacobian
-\> HIPS autograd)

``` python
@jaxit()
def square(A):
  """squares number/array"""
  return A**2
```

Now you can use jax as usual:

``` python
grad_fn = jax.grad(square)
```

``` python
grad_fn(2.0)
```

    Array(4., dtype=float32, weak_type=True)

In this toy example that was already possible without the `jaxit()`
decorator. However `jaxit()` decorated functions can contain autograd
operators (but no jax operators):

``` python
import autograd.numpy as npa
```

``` python
def sin(A):
  """computes sin of number/array using autograds numpy"""
  return npa.sin(A)
```

``` python
grad_sin = jax.grad(sin)
try:
  print(grad_sin(0.0))
except Exception as e:
  print(e)
```

    The numpy.ndarray conversion method __array__() was called on the JAX Tracer object Traced<ConcreteArray(0.0, dtype=float32, weak_type=True)>with<JVPTrace(level=2/0)> with
      primal = 0.0
      tangent = Traced<ShapedArray(float32[], weak_type=True)>with<JaxprTrace(level=1/0)> with
        pval = (ShapedArray(float32[], weak_type=True), None)
        recipe = LambdaBinding()
    See https://jax.readthedocs.io/en/latest/errors.html#jax.errors.TracerArrayConversionError

``` python
@jaxit()
def cos(A):
  """computes sin of number/array using autograds numpy"""
  return npa.cos(A)

grad_cos = jax.grad(cos)
try:
  print(grad_cos(0.0))
except Exception as e:
  print(e)
```

    -0.0

## Usecase

This library is intended for use with ceviche, while running a JAX
optimization stack as demonstated in the [inverse design
example](03_test_inverse_design.ipynb)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Jan-David-Black/javiche",
    "name": "javiche",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "nbdev jupyter notebook python ceviche fdtd inverse-design",
    "author": "Jan David Fischbach",
    "author_email": "jan-david.fischbach@blacksemicon.de",
    "download_url": "https://files.pythonhosted.org/packages/55/2e/2f9b5a30129894743ea116982a4d1984ba09e2d6d5d5ad24ededea1355d5/javiche-0.0.6.tar.gz",
    "platform": null,
    "description": "javiche\n================\n\n<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->\n\nSmall package to enable using ceviche with a JAX optimizer easily.\n\n## Install\n\n*This package is not yet published. As soon as it is install with:*\n\n``` sh\npip install javiche\n```\n\nor\n\n``` sh\nconda install javiche\n```\n\n## How to use\n\nImport the decorator\n\n``` python\nfrom javiche import jaxit\n```\n\ndecorate your function (will be differentiated using ceviches jacobian\n-\\> HIPS autograd)\n\n``` python\n@jaxit()\ndef square(A):\n  \"\"\"squares number/array\"\"\"\n  return A**2\n```\n\nNow you can use jax as usual:\n\n``` python\ngrad_fn = jax.grad(square)\n```\n\n``` python\ngrad_fn(2.0)\n```\n\n    Array(4., dtype=float32, weak_type=True)\n\nIn this toy example that was already possible without the `jaxit()`\ndecorator. However `jaxit()` decorated functions can contain autograd\noperators (but no jax operators):\n\n``` python\nimport autograd.numpy as npa\n```\n\n``` python\ndef sin(A):\n  \"\"\"computes sin of number/array using autograds numpy\"\"\"\n  return npa.sin(A)\n```\n\n``` python\ngrad_sin = jax.grad(sin)\ntry:\n  print(grad_sin(0.0))\nexcept Exception as e:\n  print(e)\n```\n\n    The numpy.ndarray conversion method __array__() was called on the JAX Tracer object Traced<ConcreteArray(0.0, dtype=float32, weak_type=True)>with<JVPTrace(level=2/0)> with\n      primal = 0.0\n      tangent = Traced<ShapedArray(float32[], weak_type=True)>with<JaxprTrace(level=1/0)> with\n        pval = (ShapedArray(float32[], weak_type=True), None)\n        recipe = LambdaBinding()\n    See https://jax.readthedocs.io/en/latest/errors.html#jax.errors.TracerArrayConversionError\n\n``` python\n@jaxit()\ndef cos(A):\n  \"\"\"computes sin of number/array using autograds numpy\"\"\"\n  return npa.cos(A)\n\ngrad_cos = jax.grad(cos)\ntry:\n  print(grad_cos(0.0))\nexcept Exception as e:\n  print(e)\n```\n\n    -0.0\n\n## Usecase\n\nThis library is intended for use with ceviche, while running a JAX\noptimization stack as demonstated in the [inverse design\nexample](03_test_inverse_design.ipynb)\n",
    "bugtrack_url": null,
    "license": "Apache Software License 2.0",
    "summary": "A JAX wrapper around ceviche to make interoperability easier. In the future it might make sense to update ceviche itself to use JAX internally.",
    "version": "0.0.6",
    "split_keywords": [
        "nbdev",
        "jupyter",
        "notebook",
        "python",
        "ceviche",
        "fdtd",
        "inverse-design"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1f1fadd69e214fcef83cd74aaf10ded79a9e367ed551c5a8732e665809c8ee60",
                "md5": "d874ce8c1a5e07e8c0cb7f75f0461723",
                "sha256": "79b29842e01c0befe13e10e2c262a5454525f843160fb7f15b4d8e155cbc90bd"
            },
            "downloads": -1,
            "filename": "javiche-0.0.6-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d874ce8c1a5e07e8c0cb7f75f0461723",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 9884,
            "upload_time": "2023-02-09T23:44:49",
            "upload_time_iso_8601": "2023-02-09T23:44:49.086648Z",
            "url": "https://files.pythonhosted.org/packages/1f/1f/add69e214fcef83cd74aaf10ded79a9e367ed551c5a8732e665809c8ee60/javiche-0.0.6-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "552e2f9b5a30129894743ea116982a4d1984ba09e2d6d5d5ad24ededea1355d5",
                "md5": "24a29b8421a963144ca0d3dac979ee21",
                "sha256": "b429dbbede453ef3bd5d0b5fb52fb516bb3e5c3249fbc4b8a8cd15280974bc4f"
            },
            "downloads": -1,
            "filename": "javiche-0.0.6.tar.gz",
            "has_sig": false,
            "md5_digest": "24a29b8421a963144ca0d3dac979ee21",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 10083,
            "upload_time": "2023-02-09T23:44:51",
            "upload_time_iso_8601": "2023-02-09T23:44:51.020106Z",
            "url": "https://files.pythonhosted.org/packages/55/2e/2f9b5a30129894743ea116982a4d1984ba09e2d6d5d5ad24ededea1355d5/javiche-0.0.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-02-09 23:44:51",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "Jan-David-Black",
    "github_project": "javiche",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "javiche"
}
        
Elapsed time: 0.13670s