jaxopt


Namejaxopt JSON
Version 0.8.2 PyPI version JSON
download
home_pagehttps://github.com/google/jaxopt
SummaryHardware accelerated, batchable and differentiable optimizers in JAX.
upload_time2023-11-06 11:01:16
maintainer
docs_urlNone
authorGoogle LLC
requires_python
licenseApache 2.0
keywords optimization root finding implicit differentiation jax
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # JAXopt

[**Installation**](#installation)
| [**Documentation**](https://jaxopt.github.io)
| [**Examples**](https://github.com/google/jaxopt/tree/main/examples)
| [**Cite us**](#citeus)

Hardware accelerated, batchable and differentiable optimizers in
[JAX](https://github.com/google/jax).

- **Hardware accelerated:** our implementations run on GPU and TPU, in addition
  to CPU.
- **Batchable:** multiple instances of the same optimization problem can be
  automatically vectorized using JAX's vmap.
- **Differentiable:** optimization problem solutions can be differentiated with
  respect to their inputs either implicitly or via autodiff of unrolled
  algorithm iterations.

## Installation<a id="installation"></a>

To install the latest release of JAXopt, use the following command:

```bash
$ pip install jaxopt
```

To install the **development** version, use the following command instead:

```bash
$ pip install git+https://github.com/google/jaxopt
```

Alternatively, it can be installed from sources with the following command:

```bash
$ python setup.py install
```

## Cite us<a id="citeus"></a>

Our implicit differentiation framework is described in this
[paper](https://arxiv.org/abs/2105.15183). To cite it:

```
@article{jaxopt_implicit_diff,
  title={Efficient and Modular Implicit Differentiation},
  author={Blondel, Mathieu and Berthet, Quentin and Cuturi, Marco and Frostig, Roy 
    and Hoyer, Stephan and Llinares-L{\'o}pez, Felipe and Pedregosa, Fabian 
    and Vert, Jean-Philippe},
  journal={arXiv preprint arXiv:2105.15183},
  year={2021}
}
```

## Disclaimer

JAXopt is an open source project maintained by a dedicated team in Google Research, but is not an official Google product.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/google/jaxopt",
    "name": "jaxopt",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "optimization,root finding,implicit differentiation,jax",
    "author": "Google LLC",
    "author_email": "no-reply@google.com",
    "download_url": "https://files.pythonhosted.org/packages/db/af/9027af6323e5870e45440d4e5954e92ed2502736d3b28aa3bd0f0412c733/jaxopt-0.8.2.tar.gz",
    "platform": null,
    "description": "# JAXopt\n\n[**Installation**](#installation)\n| [**Documentation**](https://jaxopt.github.io)\n| [**Examples**](https://github.com/google/jaxopt/tree/main/examples)\n| [**Cite us**](#citeus)\n\nHardware accelerated, batchable and differentiable optimizers in\n[JAX](https://github.com/google/jax).\n\n- **Hardware accelerated:** our implementations run on GPU and TPU, in addition\n  to CPU.\n- **Batchable:** multiple instances of the same optimization problem can be\n  automatically vectorized using JAX's vmap.\n- **Differentiable:** optimization problem solutions can be differentiated with\n  respect to their inputs either implicitly or via autodiff of unrolled\n  algorithm iterations.\n\n## Installation<a id=\"installation\"></a>\n\nTo install the latest release of JAXopt, use the following command:\n\n```bash\n$ pip install jaxopt\n```\n\nTo install the **development** version, use the following command instead:\n\n```bash\n$ pip install git+https://github.com/google/jaxopt\n```\n\nAlternatively, it can be installed from sources with the following command:\n\n```bash\n$ python setup.py install\n```\n\n## Cite us<a id=\"citeus\"></a>\n\nOur implicit differentiation framework is described in this\n[paper](https://arxiv.org/abs/2105.15183). To cite it:\n\n```\n@article{jaxopt_implicit_diff,\n  title={Efficient and Modular Implicit Differentiation},\n  author={Blondel, Mathieu and Berthet, Quentin and Cuturi, Marco and Frostig, Roy \n    and Hoyer, Stephan and Llinares-L{\\'o}pez, Felipe and Pedregosa, Fabian \n    and Vert, Jean-Philippe},\n  journal={arXiv preprint arXiv:2105.15183},\n  year={2021}\n}\n```\n\n## Disclaimer\n\nJAXopt is an open source project maintained by a dedicated team in Google Research, but is not an official Google product.\n",
    "bugtrack_url": null,
    "license": "Apache 2.0",
    "summary": "Hardware accelerated, batchable and differentiable optimizers in JAX.",
    "version": "0.8.2",
    "project_urls": {
        "Homepage": "https://github.com/google/jaxopt"
    },
    "split_keywords": [
        "optimization",
        "root finding",
        "implicit differentiation",
        "jax"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "45eea74d0ec01e2c90945cdb10f5c886441d2a78f11f612f14830df39a94b8b5",
                "md5": "0ae19314b825c93c0411d2d5894bd11d",
                "sha256": "5dd94a635ae52899d4a5063ec88b4c1ca9f04d921b888f73211a444c937b7cfa"
            },
            "downloads": -1,
            "filename": "jaxopt-0.8.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "0ae19314b825c93c0411d2d5894bd11d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 170328,
            "upload_time": "2023-11-06T11:01:14",
            "upload_time_iso_8601": "2023-11-06T11:01:14.604318Z",
            "url": "https://files.pythonhosted.org/packages/45/ee/a74d0ec01e2c90945cdb10f5c886441d2a78f11f612f14830df39a94b8b5/jaxopt-0.8.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "dbaf9027af6323e5870e45440d4e5954e92ed2502736d3b28aa3bd0f0412c733",
                "md5": "a47dbe2de2fa830780f7e30b73666c67",
                "sha256": "65b5b4d17cde3ead7e3c8de6ebd2df8a9a12a3520211f02b0345dde8de37d25d"
            },
            "downloads": -1,
            "filename": "jaxopt-0.8.2.tar.gz",
            "has_sig": false,
            "md5_digest": "a47dbe2de2fa830780f7e30b73666c67",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 120053,
            "upload_time": "2023-11-06T11:01:16",
            "upload_time_iso_8601": "2023-11-06T11:01:16.750156Z",
            "url": "https://files.pythonhosted.org/packages/db/af/9027af6323e5870e45440d4e5954e92ed2502736d3b28aa3bd0f0412c733/jaxopt-0.8.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-11-06 11:01:16",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "google",
    "github_project": "jaxopt",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "jaxopt"
}
        
Elapsed time: 0.17575s