jebasa


Namejebasa JSON
Version 0.1.1 PyPI version JSON
download
home_pageNone
SummaryJapanese ebook audio subtitle aligner - Create synchronized subtitles from Japanese audiobooks and EPUB files
upload_time2025-09-05 06:38:39
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseNone
keywords alignment audio epub japanese mfa nlp subtitles
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Jebasa (Japanese ebook audio subtitle aligner)

[![PyPI version](https://badge.fury.io/py/jebasa.svg)](https://badge.fury.io/py/jebasa)
[![Python Support](https://img.shields.io/pypi/pyversions/jebasa.svg)](https://pypi.org/project/jebasa/)
[![Tests](https://github.com/OCboy5/jebasa/workflows/CI/badge.svg)](https://github.com/OCboy5/jebasa/actions)
[![codecov](https://codecov.io/gh/yourusername/jebasa/branch/main/graph/badge.svg)](https://codecov.io/gh/yourusername/jebasa)

**Jebasa** is a Python package that creates synchronized subtitles from Japanese audiobooks and EPUB files using forced alignment. It handles Japanese-specific challenges like furigana annotations and morphological analysis to produce high-quality subtitle files.

## Features

- 🎵 **Audio Processing**: Convert and prepare audio files for alignment
- 📖 **Text Extraction**: Process EPUB and text files with furigana support
- 🗣️ **Dictionary Creation**: Generate custom pronunciation dictionaries
- ⚖️ **Forced Alignment**: Use Montreal Forced Aligner for precise timing
- 📝 **Subtitle Generation**: Create properly timed SRT files
- 🔄 **Complete Pipeline**: Run all stages automatically or individually
- 🇯🇵 **Japanese Optimized**: Handles furigana, tokenization, and text normalization

## Installation

### Prerequisites

- Python 3.8 or higher
- FFmpeg (for audio processing)
- Montreal Forced Aligner (for alignment)

### Install Jebasa

```bash
pip install jebasa
```

### Install System Dependencies

#### Ubuntu/Debian
```bash
sudo apt update
sudo apt install ffmpeg
pip install montreal-forced-aligner
mfa model download acoustic japanese_mfa
```

#### macOS
```bash
brew install ffmpeg
pip install montreal-forced-aligner
mfa model download acoustic japanese_mfa
```

#### Windows
```bash
choco install ffmpeg
pip install montreal-forced-aligner
mfa model download acoustic japanese_mfa
```

## Quick Start

### Basic Usage

```bash
# Run complete pipeline
jebasa run --input-dir ./my_book --output-dir ./output

# Or run individual stages
jebasa prepare-audio --input-dir ./my_book/audio --output-dir ./processed
jebasa prepare-text --input-dir ./my_book/text --output-dir ./processed
jebasa create-dictionary --input-dir ./processed --output-dir ./dictionaries
jebasa align --corpus-dir ./processed --dictionary ./dictionaries/custom.dict --output-dir ./aligned
jebasa generate-subtitles --alignment-dir ./aligned --text-dir ./processed --output-dir ./subtitles
```

### Python API

```python
from jebasa import JebasaPipeline
from jebasa.config import JebasaConfig

# Create configuration
config = JebasaConfig()
config.paths.input_dir = "./my_book"
config.paths.output_dir = "./output"

# Run pipeline
pipeline = JebasaPipeline(config)
results = pipeline.run_all()

print(f"Generated {len(results)} subtitle files")
```

## Input Requirements

### Audio Files
- Formats: MP3, M4A, WAV, FLAC, AAC
- Will be converted to 16kHz mono WAV for alignment
- Quality: Clear speech with minimal background noise

### Text Files
- Formats: EPUB, XHTML, HTML, TXT
- Japanese text with optional furigana (ruby) annotations
- Should correspond to audio content

## Configuration

Jebasa can be configured via command-line options, configuration files, or environment variables.

### Configuration File

Create a `jebasa.yaml` file:

```yaml
audio:
  sample_rate: 16000
  channels: 1
  format: wav

text:
  tokenizer: mecab
  normalize_text: true
  extract_furigana: true

mfa:
  acoustic_model: japanese_mfa
  beam: 100
  retry_beam: 400
  num_jobs: 4

subtitles:
  max_line_length: 42
  max_lines: 2
  min_duration: 1.0
  max_duration: 7.0

paths:
  input_dir: ./input
  output_dir: ./output
  temp_dir: ./temp
```

### Command Line Options

```bash
jebasa run --help
jebasa prepare-audio --help
jebasa prepare-text --help
jebasa create-dictionary --help
jebasa align --help
jebasa generate-subtitles --help
```

## Examples

### Example 1: Basic Audiobook Processing

```bash
# Organize your files
mkdir my_book/{audio,text}
cp audiobook.mp3 my_book/audio/
cp book.epub my_book/text/

# Run complete pipeline
jebasa run --input-dir ./my_book --output-dir ./output

# Find your subtitles
ls output/srt/
```

### Example 2: Custom Quality Settings

```bash
# High-quality alignment with more beam search
jebasa align \
  --corpus-dir ./processed \
  --dictionary ./dictionaries/custom.dict \
  --output-dir ./aligned \
  --beam 200 \
  --retry-beam 600 \
  --num-jobs 8
```

### Example 3: Processing with Configuration File

```bash
# Create configuration file
cat > jebasa.yaml << EOF
audio:
  sample_rate: 22050
  ffmpeg_options:
    acodec: pcm_s16le

text:
  min_chapter_length: 500

mfa:
  num_jobs: 8
  beam: 150
EOF

# Use configuration file
jebasa run --config jebasa.yaml --input-dir ./my_book
```

## Advanced Usage

### Custom Audio Processing

```python
from jebasa.audio import AudioProcessor
from jebasa.config import AudioConfig

config = AudioConfig(
    sample_rate=22050,
    channels=1,
    format="wav",
    ffmpeg_options={"acodec": "pcm_s16le"}
)

processor = AudioProcessor(config)
processed_files = processor.process_audio_files(
    input_dir="./audio",
    output_dir="./processed"
)
```

### Custom Text Processing

```python
from jebasa.text import TextProcessor
from jebasa.config import TextConfig

config = TextConfig(
    tokenizer="mecab",
    normalize_text=True,
    extract_furigana=True
)

processor = TextProcessor(config)
processed_files = processor.process_text_files(
    input_dir="./text",
    output_dir="./processed"
)
```

### Pipeline Stages

```python
from jebasa.pipeline import JebasaPipeline
from jebasa.config import JebasaConfig

config = JebasaConfig()
pipeline = JebasaPipeline(config)

# Run individual stages
audio_files = pipeline.prepare_audio()
text_files = pipeline.prepare_text()
dictionary = pipeline.create_dictionary()
alignments = pipeline.run_alignment()
subtitles = pipeline.generate_subtitles()
```

## Troubleshooting

### Common Issues

1. **FFmpeg not found**
   ```
   Error: FFmpeg not found. Please install FFmpeg.
   ```
   Solution: Install FFmpeg using your system's package manager.

2. **MFA model not found**
   ```
   Error: Acoustic model 'japanese_mfa' not found
   ```
   Solution: Download the model with `mfa model download acoustic japanese_mfa`

3. **Poor alignment quality**
   - Check audio quality (clear speech, minimal noise)
   - Verify text matches audio content
   - Try adjusting beam search parameters
   - Check pronunciation dictionary coverage

4. **Memory issues during alignment**
   - Reduce `--num-jobs` parameter
   - Process files in smaller batches
   - Ensure sufficient RAM (8GB+ recommended)

### Getting Help

- Check the [documentation](https://jebasa.readthedocs.io)
- Report issues on [GitHub](https://github.com/OCboy5/jebasa/issues)
- Join our [discussion forum](https://github.com/OCboy5/jebasa/discussions)

## Contributing

We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.

## License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## Acknowledgments

- [Montreal Forced Aligner](https://montreal-forced-aligner.readthedocs.io/) for alignment
- [fugashi](https://github.com/polm/fugashi) for Japanese tokenization
- [BeautifulSoup](https://www.crummy.com/software/BeautifulSoup/) for HTML/XML parsing

## Citation

If you use Jebasa in your research, please cite:

```bibtex
@software{jebasa,
  title={Jebasa: Japanese ebook audio subtitle aligner},
  author={Your Name},
  year={2024},
  url={https://github.com/OCboy5/jebasa}
}
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "jebasa",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "alignment, audio, epub, japanese, mfa, nlp, subtitles",
    "author": null,
    "author_email": "OCboy5 <your.email@example.com>",
    "download_url": "https://files.pythonhosted.org/packages/aa/61/1df0ab66c27cae9ca8fa1bbe45a616b760030e633f2d6750b5e3a0fe60ef/jebasa-0.1.1.tar.gz",
    "platform": null,
    "description": "# Jebasa (Japanese ebook audio subtitle aligner)\n\n[![PyPI version](https://badge.fury.io/py/jebasa.svg)](https://badge.fury.io/py/jebasa)\n[![Python Support](https://img.shields.io/pypi/pyversions/jebasa.svg)](https://pypi.org/project/jebasa/)\n[![Tests](https://github.com/OCboy5/jebasa/workflows/CI/badge.svg)](https://github.com/OCboy5/jebasa/actions)\n[![codecov](https://codecov.io/gh/yourusername/jebasa/branch/main/graph/badge.svg)](https://codecov.io/gh/yourusername/jebasa)\n\n**Jebasa** is a Python package that creates synchronized subtitles from Japanese audiobooks and EPUB files using forced alignment. It handles Japanese-specific challenges like furigana annotations and morphological analysis to produce high-quality subtitle files.\n\n## Features\n\n- \ud83c\udfb5 **Audio Processing**: Convert and prepare audio files for alignment\n- \ud83d\udcd6 **Text Extraction**: Process EPUB and text files with furigana support\n- \ud83d\udde3\ufe0f **Dictionary Creation**: Generate custom pronunciation dictionaries\n- \u2696\ufe0f **Forced Alignment**: Use Montreal Forced Aligner for precise timing\n- \ud83d\udcdd **Subtitle Generation**: Create properly timed SRT files\n- \ud83d\udd04 **Complete Pipeline**: Run all stages automatically or individually\n- \ud83c\uddef\ud83c\uddf5 **Japanese Optimized**: Handles furigana, tokenization, and text normalization\n\n## Installation\n\n### Prerequisites\n\n- Python 3.8 or higher\n- FFmpeg (for audio processing)\n- Montreal Forced Aligner (for alignment)\n\n### Install Jebasa\n\n```bash\npip install jebasa\n```\n\n### Install System Dependencies\n\n#### Ubuntu/Debian\n```bash\nsudo apt update\nsudo apt install ffmpeg\npip install montreal-forced-aligner\nmfa model download acoustic japanese_mfa\n```\n\n#### macOS\n```bash\nbrew install ffmpeg\npip install montreal-forced-aligner\nmfa model download acoustic japanese_mfa\n```\n\n#### Windows\n```bash\nchoco install ffmpeg\npip install montreal-forced-aligner\nmfa model download acoustic japanese_mfa\n```\n\n## Quick Start\n\n### Basic Usage\n\n```bash\n# Run complete pipeline\njebasa run --input-dir ./my_book --output-dir ./output\n\n# Or run individual stages\njebasa prepare-audio --input-dir ./my_book/audio --output-dir ./processed\njebasa prepare-text --input-dir ./my_book/text --output-dir ./processed\njebasa create-dictionary --input-dir ./processed --output-dir ./dictionaries\njebasa align --corpus-dir ./processed --dictionary ./dictionaries/custom.dict --output-dir ./aligned\njebasa generate-subtitles --alignment-dir ./aligned --text-dir ./processed --output-dir ./subtitles\n```\n\n### Python API\n\n```python\nfrom jebasa import JebasaPipeline\nfrom jebasa.config import JebasaConfig\n\n# Create configuration\nconfig = JebasaConfig()\nconfig.paths.input_dir = \"./my_book\"\nconfig.paths.output_dir = \"./output\"\n\n# Run pipeline\npipeline = JebasaPipeline(config)\nresults = pipeline.run_all()\n\nprint(f\"Generated {len(results)} subtitle files\")\n```\n\n## Input Requirements\n\n### Audio Files\n- Formats: MP3, M4A, WAV, FLAC, AAC\n- Will be converted to 16kHz mono WAV for alignment\n- Quality: Clear speech with minimal background noise\n\n### Text Files\n- Formats: EPUB, XHTML, HTML, TXT\n- Japanese text with optional furigana (ruby) annotations\n- Should correspond to audio content\n\n## Configuration\n\nJebasa can be configured via command-line options, configuration files, or environment variables.\n\n### Configuration File\n\nCreate a `jebasa.yaml` file:\n\n```yaml\naudio:\n  sample_rate: 16000\n  channels: 1\n  format: wav\n\ntext:\n  tokenizer: mecab\n  normalize_text: true\n  extract_furigana: true\n\nmfa:\n  acoustic_model: japanese_mfa\n  beam: 100\n  retry_beam: 400\n  num_jobs: 4\n\nsubtitles:\n  max_line_length: 42\n  max_lines: 2\n  min_duration: 1.0\n  max_duration: 7.0\n\npaths:\n  input_dir: ./input\n  output_dir: ./output\n  temp_dir: ./temp\n```\n\n### Command Line Options\n\n```bash\njebasa run --help\njebasa prepare-audio --help\njebasa prepare-text --help\njebasa create-dictionary --help\njebasa align --help\njebasa generate-subtitles --help\n```\n\n## Examples\n\n### Example 1: Basic Audiobook Processing\n\n```bash\n# Organize your files\nmkdir my_book/{audio,text}\ncp audiobook.mp3 my_book/audio/\ncp book.epub my_book/text/\n\n# Run complete pipeline\njebasa run --input-dir ./my_book --output-dir ./output\n\n# Find your subtitles\nls output/srt/\n```\n\n### Example 2: Custom Quality Settings\n\n```bash\n# High-quality alignment with more beam search\njebasa align \\\n  --corpus-dir ./processed \\\n  --dictionary ./dictionaries/custom.dict \\\n  --output-dir ./aligned \\\n  --beam 200 \\\n  --retry-beam 600 \\\n  --num-jobs 8\n```\n\n### Example 3: Processing with Configuration File\n\n```bash\n# Create configuration file\ncat > jebasa.yaml << EOF\naudio:\n  sample_rate: 22050\n  ffmpeg_options:\n    acodec: pcm_s16le\n\ntext:\n  min_chapter_length: 500\n\nmfa:\n  num_jobs: 8\n  beam: 150\nEOF\n\n# Use configuration file\njebasa run --config jebasa.yaml --input-dir ./my_book\n```\n\n## Advanced Usage\n\n### Custom Audio Processing\n\n```python\nfrom jebasa.audio import AudioProcessor\nfrom jebasa.config import AudioConfig\n\nconfig = AudioConfig(\n    sample_rate=22050,\n    channels=1,\n    format=\"wav\",\n    ffmpeg_options={\"acodec\": \"pcm_s16le\"}\n)\n\nprocessor = AudioProcessor(config)\nprocessed_files = processor.process_audio_files(\n    input_dir=\"./audio\",\n    output_dir=\"./processed\"\n)\n```\n\n### Custom Text Processing\n\n```python\nfrom jebasa.text import TextProcessor\nfrom jebasa.config import TextConfig\n\nconfig = TextConfig(\n    tokenizer=\"mecab\",\n    normalize_text=True,\n    extract_furigana=True\n)\n\nprocessor = TextProcessor(config)\nprocessed_files = processor.process_text_files(\n    input_dir=\"./text\",\n    output_dir=\"./processed\"\n)\n```\n\n### Pipeline Stages\n\n```python\nfrom jebasa.pipeline import JebasaPipeline\nfrom jebasa.config import JebasaConfig\n\nconfig = JebasaConfig()\npipeline = JebasaPipeline(config)\n\n# Run individual stages\naudio_files = pipeline.prepare_audio()\ntext_files = pipeline.prepare_text()\ndictionary = pipeline.create_dictionary()\nalignments = pipeline.run_alignment()\nsubtitles = pipeline.generate_subtitles()\n```\n\n## Troubleshooting\n\n### Common Issues\n\n1. **FFmpeg not found**\n   ```\n   Error: FFmpeg not found. Please install FFmpeg.\n   ```\n   Solution: Install FFmpeg using your system's package manager.\n\n2. **MFA model not found**\n   ```\n   Error: Acoustic model 'japanese_mfa' not found\n   ```\n   Solution: Download the model with `mfa model download acoustic japanese_mfa`\n\n3. **Poor alignment quality**\n   - Check audio quality (clear speech, minimal noise)\n   - Verify text matches audio content\n   - Try adjusting beam search parameters\n   - Check pronunciation dictionary coverage\n\n4. **Memory issues during alignment**\n   - Reduce `--num-jobs` parameter\n   - Process files in smaller batches\n   - Ensure sufficient RAM (8GB+ recommended)\n\n### Getting Help\n\n- Check the [documentation](https://jebasa.readthedocs.io)\n- Report issues on [GitHub](https://github.com/OCboy5/jebasa/issues)\n- Join our [discussion forum](https://github.com/OCboy5/jebasa/discussions)\n\n## Contributing\n\nWe welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.\n\n## License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n\n## Acknowledgments\n\n- [Montreal Forced Aligner](https://montreal-forced-aligner.readthedocs.io/) for alignment\n- [fugashi](https://github.com/polm/fugashi) for Japanese tokenization\n- [BeautifulSoup](https://www.crummy.com/software/BeautifulSoup/) for HTML/XML parsing\n\n## Citation\n\nIf you use Jebasa in your research, please cite:\n\n```bibtex\n@software{jebasa,\n  title={Jebasa: Japanese ebook audio subtitle aligner},\n  author={Your Name},\n  year={2024},\n  url={https://github.com/OCboy5/jebasa}\n}\n```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Japanese ebook audio subtitle aligner - Create synchronized subtitles from Japanese audiobooks and EPUB files",
    "version": "0.1.1",
    "project_urls": {
        "Bug Tracker": "https://github.com/OCboy5/jebasa/issues",
        "Documentation": "https://jebasa.readthedocs.io",
        "Homepage": "https://github.com/OCboy5/jebasa",
        "Repository": "https://github.com/OCboy5/jebasa"
    },
    "split_keywords": [
        "alignment",
        " audio",
        " epub",
        " japanese",
        " mfa",
        " nlp",
        " subtitles"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "a348bb568834a08a0df47965bd7b05ddc1b632c41a6ca2533d59557cb09ef965",
                "md5": "17f89cc8efdc84b6d69bffb124b578aa",
                "sha256": "771e07e8c5290e6e822427f8b40b6126468833f6476597e38bb6031133144bc1"
            },
            "downloads": -1,
            "filename": "jebasa-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "17f89cc8efdc84b6d69bffb124b578aa",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 38438,
            "upload_time": "2025-09-05T06:38:38",
            "upload_time_iso_8601": "2025-09-05T06:38:38.587202Z",
            "url": "https://files.pythonhosted.org/packages/a3/48/bb568834a08a0df47965bd7b05ddc1b632c41a6ca2533d59557cb09ef965/jebasa-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "aa611df0ab66c27cae9ca8fa1bbe45a616b760030e633f2d6750b5e3a0fe60ef",
                "md5": "87d88122c41118f092286b98033ca373",
                "sha256": "aa460415ebd7e66d9ee90a356084c434f2beb4eabb5df0d9de11f905ae9f865d"
            },
            "downloads": -1,
            "filename": "jebasa-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "87d88122c41118f092286b98033ca373",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 56153,
            "upload_time": "2025-09-05T06:38:39",
            "upload_time_iso_8601": "2025-09-05T06:38:39.869904Z",
            "url": "https://files.pythonhosted.org/packages/aa/61/1df0ab66c27cae9ca8fa1bbe45a616b760030e633f2d6750b5e3a0fe60ef/jebasa-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-05 06:38:39",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "OCboy5",
    "github_project": "jebasa",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "jebasa"
}
        
Elapsed time: 0.56952s