# jetson-cli
A comprehensive CLI tool for setting up NVIDIA Jetson devices and building containerized AI/ML applications using the jetson-containers framework.
## Overview
jetson-cli provides a streamlined interface for:
- Analyzing and configuring Jetson hardware
- Setting up development environments
- Building and running containerized AI/ML applications
- Managing the jetson-containers ecosystem
## Installation
### From PyPI (Recommended)
```bash
pip install jetson-cli
```
### From Source
```bash
git clone https://github.com/orinachum/jetson-cli.git
cd jetson-cli
pip install -e .
```
## Quick Start
1. **Analyze your system**:
```bash
jetson-cli probe
```
2. **Initialize environment**:
```bash
jetson-cli init
```
3. **Complete setup**:
```bash
jetson-cli setup
```
## Commands
### System Analysis
```bash
jetson-cli probe # Show system configuration
jetson-cli probe --output json # Output as JSON
jetson-cli probe --save config.yaml # Save to file
```
### Environment Setup
```bash
jetson-cli init # Create environment profile
jetson-cli init --profile-name dev # Custom profile name
jetson-cli init --force # Overwrite existing profile
```
### System Configuration
```bash
jetson-cli setup # Complete system setup
jetson-cli setup --skip-docker # Skip Docker configuration
jetson-cli setup --interactive # Interactive mode
```
### Component Management
```bash
jetson-cli configure docker # Configure Docker daemon
jetson-cli configure swap # Setup swap file
jetson-cli configure ssd # Configure SSD storage
jetson-cli configure power # Power management settings
jetson-cli configure gui # GUI environment setup
```
### Status Monitoring
```bash
jetson-cli status # Show system status
jetson-cli status --format json # JSON output format
```
## jetson-containers Integration
This tool integrates with the [jetson-containers](https://github.com/dusty-nv/jetson-containers) framework to provide containerized AI/ML packages:
### Container Building
```bash
# After jetson-cli setup, use jetson-containers directly
jetson-containers build pytorch # Build PyTorch container
jetson-containers build pytorch jupyterlab # Chain multiple packages
jetson-containers build --name=my_app pytorch # Custom container name
```
### Available Packages
- **ML/AI**: PyTorch, TensorFlow, ONNX Runtime, transformers
- **LLM**: SGLang, vLLM, MLC, text-generation-webui, ollama
- **VLM**: LLaVA, VILA, NanoLLM (vision-language models)
- **Robotics**: ROS, Genesis, OpenVLA, LeRobot
- **Computer Vision**: NanoOWL, SAM, CLIP, DeepStream
- **Graphics**: Stable Diffusion, ComfyUI, NeRF Studio
### Running Containers
```bash
jetson-containers run $(autotag l4t-pytorch)
```
## Examples
### Complete Jetson Setup Workflow
```bash
# 1. Analyze hardware and software configuration
jetson-cli probe --save system-info.yaml
# 2. Create development environment profile
jetson-cli init --profile-name ml-dev
# 3. Configure the system for AI/ML development
jetson-cli setup
# 4. Verify everything is working
jetson-cli status
# 5. Build and run your first container
jetson-containers build pytorch
jetson-containers run $(autotag l4t-pytorch)
```
### Selective Component Configuration
```bash
# Configure only Docker (skip other components)
jetson-cli configure docker
# Setup additional swap space
jetson-cli configure swap
# Configure external SSD storage
jetson-cli configure ssd
```
## Architecture
- **CLI Interface** (`jetson_cli/`): User-friendly Click-based commands
- **System Scripts** (`scripts/`): Low-level system configuration scripts
- **Container Framework** (`jetson-containers/`): Modular container build system
- **Package Ecosystem**: 100+ pre-built AI/ML container packages
## Requirements
- NVIDIA Jetson device (Nano, Xavier, Orin series)
- JetPack 4.6+ or L4T R32.7+
- Python 3.6+
- Docker support
## Contributing
1. Fork the repository
2. Create your feature branch (`git checkout -b feature/amazing-feature`)
3. Commit your changes (`git commit -m 'Add amazing feature'`)
4. Push to the branch (`git push origin feature/amazing-feature`)
5. Open a Pull Request
## License
This project is licensed under the MIT License - see the LICENSE file for details.
Raw data
{
"_id": null,
"home_page": "https://github.com/your-org/jetson-setup",
"name": "jetson-cli",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "jetson, nvidia, embedded, ai, ml, docker, containers, setup",
"author": "Jetson Setup Team",
"author_email": "Jetson Setup Team <support@jetson-setup.com>",
"download_url": "https://files.pythonhosted.org/packages/73/1b/854b31795ae9a3d10ea2df8bb219e6d6941cf8905d6b735905e58cdda6f4/jetson_cli-0.4.0.tar.gz",
"platform": null,
"description": "# jetson-cli\n\nA comprehensive CLI tool for setting up NVIDIA Jetson devices and building containerized AI/ML applications using the jetson-containers framework.\n\n## Overview\n\njetson-cli provides a streamlined interface for:\n- Analyzing and configuring Jetson hardware\n- Setting up development environments\n- Building and running containerized AI/ML applications\n- Managing the jetson-containers ecosystem\n\n## Installation\n\n### From PyPI (Recommended)\n```bash\npip install jetson-cli\n```\n\n### From Source\n```bash\ngit clone https://github.com/orinachum/jetson-cli.git\ncd jetson-cli\npip install -e .\n```\n\n## Quick Start\n\n1. **Analyze your system**:\n ```bash\n jetson-cli probe\n ```\n\n2. **Initialize environment**:\n ```bash\n jetson-cli init\n ```\n\n3. **Complete setup**:\n ```bash\n jetson-cli setup\n ```\n\n## Commands\n\n### System Analysis\n```bash\njetson-cli probe # Show system configuration\njetson-cli probe --output json # Output as JSON\njetson-cli probe --save config.yaml # Save to file\n```\n\n### Environment Setup\n```bash\njetson-cli init # Create environment profile\njetson-cli init --profile-name dev # Custom profile name\njetson-cli init --force # Overwrite existing profile\n```\n\n### System Configuration\n```bash\njetson-cli setup # Complete system setup\njetson-cli setup --skip-docker # Skip Docker configuration\njetson-cli setup --interactive # Interactive mode\n```\n\n### Component Management\n```bash\njetson-cli configure docker # Configure Docker daemon\njetson-cli configure swap # Setup swap file\njetson-cli configure ssd # Configure SSD storage\njetson-cli configure power # Power management settings\njetson-cli configure gui # GUI environment setup\n```\n\n### Status Monitoring\n```bash\njetson-cli status # Show system status\njetson-cli status --format json # JSON output format\n```\n\n## jetson-containers Integration\n\nThis tool integrates with the [jetson-containers](https://github.com/dusty-nv/jetson-containers) framework to provide containerized AI/ML packages:\n\n### Container Building\n```bash\n# After jetson-cli setup, use jetson-containers directly\njetson-containers build pytorch # Build PyTorch container\njetson-containers build pytorch jupyterlab # Chain multiple packages\njetson-containers build --name=my_app pytorch # Custom container name\n```\n\n### Available Packages\n- **ML/AI**: PyTorch, TensorFlow, ONNX Runtime, transformers\n- **LLM**: SGLang, vLLM, MLC, text-generation-webui, ollama\n- **VLM**: LLaVA, VILA, NanoLLM (vision-language models)\n- **Robotics**: ROS, Genesis, OpenVLA, LeRobot\n- **Computer Vision**: NanoOWL, SAM, CLIP, DeepStream\n- **Graphics**: Stable Diffusion, ComfyUI, NeRF Studio\n\n### Running Containers\n```bash\njetson-containers run $(autotag l4t-pytorch)\n```\n\n## Examples\n\n### Complete Jetson Setup Workflow\n```bash\n# 1. Analyze hardware and software configuration\njetson-cli probe --save system-info.yaml\n\n# 2. Create development environment profile\njetson-cli init --profile-name ml-dev\n\n# 3. Configure the system for AI/ML development\njetson-cli setup\n\n# 4. Verify everything is working\njetson-cli status\n\n# 5. Build and run your first container\njetson-containers build pytorch\njetson-containers run $(autotag l4t-pytorch)\n```\n\n### Selective Component Configuration\n```bash\n# Configure only Docker (skip other components)\njetson-cli configure docker\n\n# Setup additional swap space\njetson-cli configure swap\n\n# Configure external SSD storage\njetson-cli configure ssd\n```\n\n## Architecture\n\n- **CLI Interface** (`jetson_cli/`): User-friendly Click-based commands\n- **System Scripts** (`scripts/`): Low-level system configuration scripts\n- **Container Framework** (`jetson-containers/`): Modular container build system\n- **Package Ecosystem**: 100+ pre-built AI/ML container packages\n\n## Requirements\n\n- NVIDIA Jetson device (Nano, Xavier, Orin series)\n- JetPack 4.6+ or L4T R32.7+\n- Python 3.6+\n- Docker support\n\n## Contributing\n\n1. Fork the repository\n2. Create your feature branch (`git checkout -b feature/amazing-feature`)\n3. Commit your changes (`git commit -m 'Add amazing feature'`)\n4. Push to the branch (`git push origin feature/amazing-feature`)\n5. Open a Pull Request\n\n## License\n\nThis project is licensed under the MIT License - see the LICENSE file for details.\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Command-line interface for NVIDIA Jetson setup and configuration",
"version": "0.4.0",
"project_urls": {
"Bug Reports": "https://github.com/your-org/jetson-setup/issues",
"Documentation": "https://github.com/your-org/jetson-setup/blob/main/README.md",
"Homepage": "https://github.com/your-org/jetson-setup",
"Repository": "https://github.com/your-org/jetson-setup.git"
},
"split_keywords": [
"jetson",
" nvidia",
" embedded",
" ai",
" ml",
" docker",
" containers",
" setup"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "ef5454caaacf2dc0544b7ea580f7149541945c63ab1c46af108008ec6f6b0b65",
"md5": "8fdbd27dc2db6e3eda254e41a5896c15",
"sha256": "8a641087629387ac6aa3cfe8fdd013a83f23d3b601d420900339175ddf6a46f1"
},
"downloads": -1,
"filename": "jetson_cli-0.4.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "8fdbd27dc2db6e3eda254e41a5896c15",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 8633,
"upload_time": "2025-07-26T05:18:34",
"upload_time_iso_8601": "2025-07-26T05:18:34.376786Z",
"url": "https://files.pythonhosted.org/packages/ef/54/54caaacf2dc0544b7ea580f7149541945c63ab1c46af108008ec6f6b0b65/jetson_cli-0.4.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "731b854b31795ae9a3d10ea2df8bb219e6d6941cf8905d6b735905e58cdda6f4",
"md5": "90367dca5a33a1e85e887f3e282e8245",
"sha256": "4046dfa1e47b0e0f17b21b7806b8b0db901b57b146cf8de445adaba718b942ae"
},
"downloads": -1,
"filename": "jetson_cli-0.4.0.tar.gz",
"has_sig": false,
"md5_digest": "90367dca5a33a1e85e887f3e282e8245",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 32721,
"upload_time": "2025-07-26T05:18:35",
"upload_time_iso_8601": "2025-07-26T05:18:35.648518Z",
"url": "https://files.pythonhosted.org/packages/73/1b/854b31795ae9a3d10ea2df8bb219e6d6941cf8905d6b735905e58cdda6f4/jetson_cli-0.4.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-26 05:18:35",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "your-org",
"github_project": "jetson-setup",
"github_not_found": true,
"lcname": "jetson-cli"
}