# Jina-Serve
<a href="https://pypi.org/project/jina/"><img alt="PyPI" src="https://img.shields.io/pypi/v/jina?label=Release&style=flat-square"></a>
<a href="https://discord.jina.ai"><img src="https://img.shields.io/discord/1106542220112302130?logo=discord&logoColor=white&style=flat-square"></a>
<a href="https://pypistats.org/packages/jina"><img alt="PyPI - Downloads from official pypistats" src="https://img.shields.io/pypi/dm/jina?style=flat-square"></a>
<a href="https://github.com/jina-ai/jina/actions/workflows/cd.yml"><img alt="Github CD status" src="https://github.com/jina-ai/jina/actions/workflows/cd.yml/badge.svg"></a>
Jina-serve is a framework for building and deploying AI services that communicate via gRPC, HTTP and WebSockets. Scale your services from local development to production while focusing on your core logic.
## Key Features
- Native support for all major ML frameworks and data types
- High-performance service design with scaling, streaming, and dynamic batching
- LLM serving with streaming output
- Built-in Docker integration and Executor Hub
- One-click deployment to Jina AI Cloud
- Enterprise-ready with Kubernetes and Docker Compose support
<details>
<summary><strong>Comparison with FastAPI</strong></summary>
Key advantages over FastAPI:
- DocArray-based data handling with native gRPC support
- Built-in containerization and service orchestration
- Seamless scaling of microservices
- One-command cloud deployment
</details>
## Install
```bash
pip install jina
```
See guides for [Apple Silicon](https://jina.ai/serve/get-started/install/apple-silicon-m1-m2/) and [Windows](https://jina.ai/serve/get-started/install/windows/).
## Core Concepts
Three main layers:
- **Data**: BaseDoc and DocList for input/output
- **Serving**: Executors process Documents, Gateway connects services
- **Orchestration**: Deployments serve Executors, Flows create pipelines
## Build AI Services
Let's create a gRPC-based AI service using StableLM:
```python
from jina import Executor, requests
from docarray import DocList, BaseDoc
from transformers import pipeline
class Prompt(BaseDoc):
text: str
class Generation(BaseDoc):
prompt: str
text: str
class StableLM(Executor):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.generator = pipeline(
'text-generation', model='stabilityai/stablelm-base-alpha-3b'
)
@requests
def generate(self, docs: DocList[Prompt], **kwargs) -> DocList[Generation]:
generations = DocList[Generation]()
prompts = docs.text
llm_outputs = self.generator(prompts)
for prompt, output in zip(prompts, llm_outputs):
generations.append(Generation(prompt=prompt, text=output))
return generations
```
Deploy with Python or YAML:
```python
from jina import Deployment
from executor import StableLM
dep = Deployment(uses=StableLM, timeout_ready=-1, port=12345)
with dep:
dep.block()
```
```yaml
jtype: Deployment
with:
uses: StableLM
py_modules:
- executor.py
timeout_ready: -1
port: 12345
```
Use the client:
```python
from jina import Client
from docarray import DocList
from executor import Prompt, Generation
prompt = Prompt(text='suggest an interesting image generation prompt')
client = Client(port=12345)
response = client.post('/', inputs=[prompt], return_type=DocList[Generation])
```
## Build Pipelines
Chain services into a Flow:
```python
from jina import Flow
flow = Flow(port=12345).add(uses=StableLM).add(uses=TextToImage)
with flow:
flow.block()
```
## Scaling and Deployment
### Local Scaling
Boost throughput with built-in features:
- Replicas for parallel processing
- Shards for data partitioning
- Dynamic batching for efficient model inference
Example scaling a Stable Diffusion deployment:
```yaml
jtype: Deployment
with:
uses: TextToImage
timeout_ready: -1
py_modules:
- text_to_image.py
env:
CUDA_VISIBLE_DEVICES: RR
replicas: 2
uses_dynamic_batching:
/default:
preferred_batch_size: 10
timeout: 200
```
### Cloud Deployment
#### Containerize Services
1. Structure your Executor:
```
TextToImage/
├── executor.py
├── config.yml
├── requirements.txt
```
2. Configure:
```yaml
# config.yml
jtype: TextToImage
py_modules:
- executor.py
metas:
name: TextToImage
description: Text to Image generation Executor
```
3. Push to Hub:
```bash
jina hub push TextToImage
```
#### Deploy to Kubernetes
```bash
jina export kubernetes flow.yml ./my-k8s
kubectl apply -R -f my-k8s
```
#### Use Docker Compose
```bash
jina export docker-compose flow.yml docker-compose.yml
docker-compose up
```
#### JCloud Deployment
Deploy with a single command:
```bash
jina cloud deploy jcloud-flow.yml
```
## LLM Streaming
Enable token-by-token streaming for responsive LLM applications:
1. Define schemas:
```python
from docarray import BaseDoc
class PromptDocument(BaseDoc):
prompt: str
max_tokens: int
class ModelOutputDocument(BaseDoc):
token_id: int
generated_text: str
```
2. Initialize service:
```python
from transformers import GPT2Tokenizer, GPT2LMHeadModel
class TokenStreamingExecutor(Executor):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.model = GPT2LMHeadModel.from_pretrained('gpt2')
```
3. Implement streaming:
```python
@requests(on='/stream')
async def task(self, doc: PromptDocument, **kwargs) -> ModelOutputDocument:
input = tokenizer(doc.prompt, return_tensors='pt')
input_len = input['input_ids'].shape[1]
for _ in range(doc.max_tokens):
output = self.model.generate(**input, max_new_tokens=1)
if output[0][-1] == tokenizer.eos_token_id:
break
yield ModelOutputDocument(
token_id=output[0][-1],
generated_text=tokenizer.decode(
output[0][input_len:], skip_special_tokens=True
),
)
input = {
'input_ids': output,
'attention_mask': torch.ones(1, len(output[0])),
}
```
4. Serve and use:
```python
# Server
with Deployment(uses=TokenStreamingExecutor, port=12345, protocol='grpc') as dep:
dep.block()
# Client
async def main():
client = Client(port=12345, protocol='grpc', asyncio=True)
async for doc in client.stream_doc(
on='/stream',
inputs=PromptDocument(prompt='what is the capital of France ?', max_tokens=10),
return_type=ModelOutputDocument,
):
print(doc.generated_text)
```
## Support
Jina-serve is backed by [Jina AI](https://jina.ai) and licensed under [Apache-2.0](./LICENSE).
Raw data
{
"_id": null,
"home_page": "https://github.com/jina-ai/jina/",
"name": "jina",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "jina cloud-native cross-modal multimodal neural-search query search index elastic neural-network encoding embedding serving docker container image video audio deep-learning mlops",
"author": "Jina AI",
"author_email": "hello@jina.ai",
"download_url": "https://files.pythonhosted.org/packages/ac/cf/1e22dd9be19d8025d3aa01f7452958b168b713f3b22595e3d84852e282f7/jina-3.33.0.tar.gz",
"platform": null,
"description": "# Jina-Serve\n<a href=\"https://pypi.org/project/jina/\"><img alt=\"PyPI\" src=\"https://img.shields.io/pypi/v/jina?label=Release&style=flat-square\"></a>\n<a href=\"https://discord.jina.ai\"><img src=\"https://img.shields.io/discord/1106542220112302130?logo=discord&logoColor=white&style=flat-square\"></a>\n<a href=\"https://pypistats.org/packages/jina\"><img alt=\"PyPI - Downloads from official pypistats\" src=\"https://img.shields.io/pypi/dm/jina?style=flat-square\"></a>\n<a href=\"https://github.com/jina-ai/jina/actions/workflows/cd.yml\"><img alt=\"Github CD status\" src=\"https://github.com/jina-ai/jina/actions/workflows/cd.yml/badge.svg\"></a>\n\nJina-serve is a framework for building and deploying AI services that communicate via gRPC, HTTP and WebSockets. Scale your services from local development to production while focusing on your core logic.\n\n## Key Features\n\n- Native support for all major ML frameworks and data types\n- High-performance service design with scaling, streaming, and dynamic batching\n- LLM serving with streaming output\n- Built-in Docker integration and Executor Hub\n- One-click deployment to Jina AI Cloud\n- Enterprise-ready with Kubernetes and Docker Compose support\n\n<details>\n<summary><strong>Comparison with FastAPI</strong></summary>\n\nKey advantages over FastAPI:\n\n- DocArray-based data handling with native gRPC support\n- Built-in containerization and service orchestration\n- Seamless scaling of microservices\n- One-command cloud deployment\n</details>\n\n## Install \n\n```bash\npip install jina\n```\n\nSee guides for [Apple Silicon](https://jina.ai/serve/get-started/install/apple-silicon-m1-m2/) and [Windows](https://jina.ai/serve/get-started/install/windows/).\n\n## Core Concepts\n\nThree main layers:\n- **Data**: BaseDoc and DocList for input/output\n- **Serving**: Executors process Documents, Gateway connects services\n- **Orchestration**: Deployments serve Executors, Flows create pipelines\n\n## Build AI Services\n\nLet's create a gRPC-based AI service using StableLM:\n\n```python\nfrom jina import Executor, requests\nfrom docarray import DocList, BaseDoc\nfrom transformers import pipeline\n\n\nclass Prompt(BaseDoc):\n text: str\n\n\nclass Generation(BaseDoc):\n prompt: str\n text: str\n\n\nclass StableLM(Executor):\n def __init__(self, **kwargs):\n super().__init__(**kwargs)\n self.generator = pipeline(\n 'text-generation', model='stabilityai/stablelm-base-alpha-3b'\n )\n\n @requests\n def generate(self, docs: DocList[Prompt], **kwargs) -> DocList[Generation]:\n generations = DocList[Generation]()\n prompts = docs.text\n llm_outputs = self.generator(prompts)\n for prompt, output in zip(prompts, llm_outputs):\n generations.append(Generation(prompt=prompt, text=output))\n return generations\n```\n\nDeploy with Python or YAML:\n\n```python\nfrom jina import Deployment\nfrom executor import StableLM\n\ndep = Deployment(uses=StableLM, timeout_ready=-1, port=12345)\n\nwith dep:\n dep.block()\n```\n\n```yaml\njtype: Deployment\nwith:\n uses: StableLM\n py_modules:\n - executor.py\n timeout_ready: -1\n port: 12345\n```\n\nUse the client:\n\n```python\nfrom jina import Client\nfrom docarray import DocList\nfrom executor import Prompt, Generation\n\nprompt = Prompt(text='suggest an interesting image generation prompt')\nclient = Client(port=12345)\nresponse = client.post('/', inputs=[prompt], return_type=DocList[Generation])\n```\n\n## Build Pipelines\n\nChain services into a Flow:\n\n```python\nfrom jina import Flow\n\nflow = Flow(port=12345).add(uses=StableLM).add(uses=TextToImage)\n\nwith flow:\n flow.block()\n```\n\n## Scaling and Deployment\n\n### Local Scaling\n\nBoost throughput with built-in features:\n- Replicas for parallel processing\n- Shards for data partitioning\n- Dynamic batching for efficient model inference\n\nExample scaling a Stable Diffusion deployment:\n\n```yaml\njtype: Deployment\nwith:\n uses: TextToImage\n timeout_ready: -1\n py_modules:\n - text_to_image.py\n env:\n CUDA_VISIBLE_DEVICES: RR\n replicas: 2\n uses_dynamic_batching:\n /default:\n preferred_batch_size: 10\n timeout: 200\n```\n\n### Cloud Deployment\n\n#### Containerize Services\n\n1. Structure your Executor:\n```\nTextToImage/\n\u251c\u2500\u2500 executor.py\n\u251c\u2500\u2500 config.yml\n\u251c\u2500\u2500 requirements.txt\n```\n\n2. Configure:\n```yaml\n# config.yml\njtype: TextToImage\npy_modules:\n - executor.py\nmetas:\n name: TextToImage\n description: Text to Image generation Executor\n```\n\n3. Push to Hub:\n```bash\njina hub push TextToImage\n```\n\n#### Deploy to Kubernetes\n```bash\njina export kubernetes flow.yml ./my-k8s\nkubectl apply -R -f my-k8s\n```\n\n#### Use Docker Compose\n```bash\njina export docker-compose flow.yml docker-compose.yml\ndocker-compose up\n```\n\n#### JCloud Deployment\n\nDeploy with a single command:\n```bash\njina cloud deploy jcloud-flow.yml\n```\n\n## LLM Streaming\n\nEnable token-by-token streaming for responsive LLM applications:\n\n1. Define schemas:\n```python\nfrom docarray import BaseDoc\n\n\nclass PromptDocument(BaseDoc):\n prompt: str\n max_tokens: int\n\n\nclass ModelOutputDocument(BaseDoc):\n token_id: int\n generated_text: str\n```\n\n2. Initialize service:\n```python\nfrom transformers import GPT2Tokenizer, GPT2LMHeadModel\n\n\nclass TokenStreamingExecutor(Executor):\n def __init__(self, **kwargs):\n super().__init__(**kwargs)\n self.model = GPT2LMHeadModel.from_pretrained('gpt2')\n```\n\n3. Implement streaming:\n```python\n@requests(on='/stream')\nasync def task(self, doc: PromptDocument, **kwargs) -> ModelOutputDocument:\n input = tokenizer(doc.prompt, return_tensors='pt')\n input_len = input['input_ids'].shape[1]\n for _ in range(doc.max_tokens):\n output = self.model.generate(**input, max_new_tokens=1)\n if output[0][-1] == tokenizer.eos_token_id:\n break\n yield ModelOutputDocument(\n token_id=output[0][-1],\n generated_text=tokenizer.decode(\n output[0][input_len:], skip_special_tokens=True\n ),\n )\n input = {\n 'input_ids': output,\n 'attention_mask': torch.ones(1, len(output[0])),\n }\n```\n\n4. Serve and use:\n```python\n# Server\nwith Deployment(uses=TokenStreamingExecutor, port=12345, protocol='grpc') as dep:\n dep.block()\n\n\n# Client\nasync def main():\n client = Client(port=12345, protocol='grpc', asyncio=True)\n async for doc in client.stream_doc(\n on='/stream',\n inputs=PromptDocument(prompt='what is the capital of France ?', max_tokens=10),\n return_type=ModelOutputDocument,\n ):\n print(doc.generated_text)\n```\n\n## Support\n\nJina-serve is backed by [Jina AI](https://jina.ai) and licensed under [Apache-2.0](./LICENSE).\n",
"bugtrack_url": null,
"license": "Apache 2.0",
"summary": "Multimodal AI services & pipelines with cloud-native stack: gRPC, Kubernetes, Docker, OpenTelemetry, Prometheus, Jaeger, etc.",
"version": "3.33.0",
"project_urls": {
"Documentation": "https://jina.ai/serve",
"Download": "https://github.com/jina-ai/jina/tags",
"Homepage": "https://github.com/jina-ai/jina/",
"Source": "https://github.com/jina-ai/jina/",
"Tracker": "https://github.com/jina-ai/jina/issues"
},
"split_keywords": [
"jina",
"cloud-native",
"cross-modal",
"multimodal",
"neural-search",
"query",
"search",
"index",
"elastic",
"neural-network",
"encoding",
"embedding",
"serving",
"docker",
"container",
"image",
"video",
"audio",
"deep-learning",
"mlops"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "0d219276befe8d5b9237d489978be23a073bf62a1ec5fe07d2da86806b34ae95",
"md5": "4f9bfb6ed7b1d22a31e7dc9a8985f157",
"sha256": "51fcaf9b458f129ecab584cadc957ede51b7f2278027204060a24d9d2f4fb9d7"
},
"downloads": -1,
"filename": "jina-3.33.0-cp310-cp310-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "4f9bfb6ed7b1d22a31e7dc9a8985f157",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 8954275,
"upload_time": "2024-12-20T12:13:24",
"upload_time_iso_8601": "2024-12-20T12:13:24.126325Z",
"url": "https://files.pythonhosted.org/packages/0d/21/9276befe8d5b9237d489978be23a073bf62a1ec5fe07d2da86806b34ae95/jina-3.33.0-cp310-cp310-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "496a83f4d02500b11f262c3f2a64a2a22428305ae1ac1defbad12f9eb5b106c7",
"md5": "fa52a52099cba7861bc0a01cc61224d1",
"sha256": "af942713c5ea28d7bf6fb39d00fba1b3f74d1cdb40f7f86a223a6d881f2a8238"
},
"downloads": -1,
"filename": "jina-3.33.0-cp310-cp310-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "fa52a52099cba7861bc0a01cc61224d1",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 8395597,
"upload_time": "2024-12-20T12:13:30",
"upload_time_iso_8601": "2024-12-20T12:13:30.030404Z",
"url": "https://files.pythonhosted.org/packages/49/6a/83f4d02500b11f262c3f2a64a2a22428305ae1ac1defbad12f9eb5b106c7/jina-3.33.0-cp310-cp310-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "63ecbc7a88aeeb87a4bec1e0365c4a49c97596ae496157a499fa801d1672d7e2",
"md5": "66fd0377f5a112441a0cd9c2e1c3ea11",
"sha256": "d20f73179f23deba7339ed2ea7b5796f2bde81cf963d6297335eb37e417900ce"
},
"downloads": -1,
"filename": "jina-3.33.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "66fd0377f5a112441a0cd9c2e1c3ea11",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 7880020,
"upload_time": "2024-12-20T12:13:32",
"upload_time_iso_8601": "2024-12-20T12:13:32.876401Z",
"url": "https://files.pythonhosted.org/packages/63/ec/bc7a88aeeb87a4bec1e0365c4a49c97596ae496157a499fa801d1672d7e2/jina-3.33.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "70e1e9b8d43cd7d3bbae1782cc90a7ad69fdb39412b807dbb6d44144dcd6b757",
"md5": "37ab6c4761d67011b03994f9e1026474",
"sha256": "d82cbab21359285bd43525e6c61f59529cf9ffa17d5a69215826a421b3fca194"
},
"downloads": -1,
"filename": "jina-3.33.0-cp311-cp311-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "37ab6c4761d67011b03994f9e1026474",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 8954273,
"upload_time": "2024-12-20T12:13:36",
"upload_time_iso_8601": "2024-12-20T12:13:36.174428Z",
"url": "https://files.pythonhosted.org/packages/70/e1/e9b8d43cd7d3bbae1782cc90a7ad69fdb39412b807dbb6d44144dcd6b757/jina-3.33.0-cp311-cp311-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "120d5f3f49786f95cf02c5f3c6870a67c413c2bacd1d3e0310b16c6c519e647b",
"md5": "5d97729fcc9c531125340314ef8f6337",
"sha256": "001e2df48513e8d06dbea55fb38a63604ba7d4f5e2bb96af82792d62168b5174"
},
"downloads": -1,
"filename": "jina-3.33.0-cp311-cp311-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "5d97729fcc9c531125340314ef8f6337",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 8395597,
"upload_time": "2024-12-20T12:13:39",
"upload_time_iso_8601": "2024-12-20T12:13:39.270273Z",
"url": "https://files.pythonhosted.org/packages/12/0d/5f3f49786f95cf02c5f3c6870a67c413c2bacd1d3e0310b16c6c519e647b/jina-3.33.0-cp311-cp311-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "afffe25727ff40879fe3ef7ccd696fecae6b409612479f382b7446d15772d5aa",
"md5": "f48d86746e338a09f2e4de2530140836",
"sha256": "f6aea6a40dbe1aba11a6c538ac68c6ddd504a2a3dc11649be92b7dd343279b6d"
},
"downloads": -1,
"filename": "jina-3.33.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "f48d86746e338a09f2e4de2530140836",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 7879995,
"upload_time": "2024-12-20T12:13:42",
"upload_time_iso_8601": "2024-12-20T12:13:42.149488Z",
"url": "https://files.pythonhosted.org/packages/af/ff/e25727ff40879fe3ef7ccd696fecae6b409612479f382b7446d15772d5aa/jina-3.33.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "27d7b0f942a3d2fbcdacf795ba57b147a10a080ac2567dac69decf6872ee086b",
"md5": "5efc7b0f48d2f18365ba899cef1852fa",
"sha256": "ff9d0a7d7bd1ffaf5ec24b710477ec1d05b6e18d6ec2495ddfc5f5a82d744c67"
},
"downloads": -1,
"filename": "jina-3.33.0-cp39-cp39-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "5efc7b0f48d2f18365ba899cef1852fa",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 8954762,
"upload_time": "2024-12-20T12:13:44",
"upload_time_iso_8601": "2024-12-20T12:13:44.956922Z",
"url": "https://files.pythonhosted.org/packages/27/d7/b0f942a3d2fbcdacf795ba57b147a10a080ac2567dac69decf6872ee086b/jina-3.33.0-cp39-cp39-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "cd15abbc1650b189d4642959f4cd9295b94d5e7cad9598939c2a9991a1010627",
"md5": "fc0b7d9281e6f35f06f7aec620dd55d4",
"sha256": "0e5959de40cc650364b1d86d0f393241891110d882a2d6c3fff3b2ad4d9ce838"
},
"downloads": -1,
"filename": "jina-3.33.0-cp39-cp39-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "fc0b7d9281e6f35f06f7aec620dd55d4",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 8395599,
"upload_time": "2024-12-20T12:13:49",
"upload_time_iso_8601": "2024-12-20T12:13:49.045119Z",
"url": "https://files.pythonhosted.org/packages/cd/15/abbc1650b189d4642959f4cd9295b94d5e7cad9598939c2a9991a1010627/jina-3.33.0-cp39-cp39-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "676cf4a2dd7450d642c1b553cd5e121286315b491de04c96912956e19b1dd811",
"md5": "fed60fd40d8490e4f1d8a83951524fb7",
"sha256": "728181a3971fd520bfac88747623f2bcf54a61ebd5e35a5214349956666cd49e"
},
"downloads": -1,
"filename": "jina-3.33.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "fed60fd40d8490e4f1d8a83951524fb7",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 7879944,
"upload_time": "2024-12-20T12:13:52",
"upload_time_iso_8601": "2024-12-20T12:13:52.452546Z",
"url": "https://files.pythonhosted.org/packages/67/6c/f4a2dd7450d642c1b553cd5e121286315b491de04c96912956e19b1dd811/jina-3.33.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "accf1e22dd9be19d8025d3aa01f7452958b168b713f3b22595e3d84852e282f7",
"md5": "3c71044cf33eee5fd7bd3c9898531c08",
"sha256": "0f1b341f0138dc2777fa30431a3e865cffe221c809214d9abe333803c6714e1e"
},
"downloads": -1,
"filename": "jina-3.33.0.tar.gz",
"has_sig": false,
"md5_digest": "3c71044cf33eee5fd7bd3c9898531c08",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 376921,
"upload_time": "2024-12-20T12:13:56",
"upload_time_iso_8601": "2024-12-20T12:13:56.001062Z",
"url": "https://files.pythonhosted.org/packages/ac/cf/1e22dd9be19d8025d3aa01f7452958b168b713f3b22595e3d84852e282f7/jina-3.33.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-20 12:13:56",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "jina-ai",
"github_project": "jina",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "jina"
}