jqdatapy


Namejqdatapy JSON
Version 0.1.8 PyPI version JSON
download
home_pagehttps://github.com/zvtvz/jqdatapy
Summaryunified,modular quantitative system for human beings
upload_time2022-05-17 15:17:49
maintainer
docs_urlNone
authorfoolcage
requires_python
license
keywords quant stock finance fintech big-data zvt technical-analysis trading-platform pandas fundamental-analysis
VCS
bugtrack_url
requirements requests pandas
Travis-CI
coveralls test coverage No coveralls.
            [![github](https://img.shields.io/github/stars/zvtvz/jqdatapy.svg)](https://github.com/zvtvz/jqdatapy)
[![image](https://img.shields.io/pypi/v/jqdatapy.svg)](https://pypi.org/project/jqdatapy/)
[![image](https://img.shields.io/pypi/l/jqdatapy.svg)](https://pypi.org/project/jqdatapy/)
[![image](https://img.shields.io/pypi/pyversions/jqdatapy.svg)](https://pypi.org/project/jqdatapy/)
[![build](https://github.com/zvtvz/jqdatapy/actions/workflows/build.yaml/badge.svg)](https://github.com/zvtvz/jqdatapy/actions/workflows/build.yml)
[![package](https://github.com/zvtvz/jqdatapy/actions/workflows/package.yaml/badge.svg)](https://github.com/zvtvz/jqdatapy/actions/workflows/package.yaml)

### 说明
jqdatapy为聚宽数据[http接口](https://dataapi.joinquant.com/docs)的python封装,为官方[jqdatasdk](https://github.com/JoinQuant/jqdatasdk)的轻量替代。

其目的在于减少依赖,解决版本冲突,在[zvt](https://github.com/zvtvz/zvt)中用于数据的本地化,

### 特性
* 原始封装,方法名和字段跟官方文档一致
* 自动化保留token,按需请求
* 只依赖requests和pandas(可用最新版)

### 安装
```
pip install jqdatapy

pip show jqdatapy
```

更新到最新版本
```
pip install --upgrade jqdatapy
```

###  使用

#### 初始化环境,会自动本地化token
```
In [1]: from jqdatapy import *
In [2]: init_env(username='聚宽注册手机',password='密码')
```

#### api使用
```
In [5]: print(get_bars(code='000338.XSHE'))
   ...: print(get_all_securities())
   ...: print(get_trade_days())
   ...: print(get_trade_days())
   ...: print(get_fundamentals(count=10))
   ...: print(get_mtss())
   ...: print(run_query(count=10, parse_dates=None))
        date   open  close   high    low     volume         money  paused  high_limit  low_limit    avg  pre_close
0 2020-09-14  14.24  14.35  14.43  14.22   24556166  3.514904e+08       0       15.59      12.75  14.31      14.17
1 2020-09-15  14.35  14.90  14.95  14.31   56693203  8.360576e+08       0       15.79      12.92  14.75      14.35
2 2020-09-16  14.83  15.02  15.34  14.75   49258551  7.402552e+08       0       16.39      13.41  15.03      14.90
3 2020-09-17  15.19  16.18  16.30  15.19  130136055  2.063710e+09       0       16.52      13.52  15.86      15.02
4 2020-09-18  16.35  16.59  16.65  16.23  112580041  1.854240e+09       0       17.80      14.56  16.47      16.18
5 2020-09-21  16.60  16.00  16.62  15.84   69804961  1.123414e+09       0       18.25      14.93  16.09      16.59
6 2020-09-22  15.85  15.62  16.04  15.54   50336697  7.942570e+08       0       17.60      14.40  15.78      16.00
7 2020-09-23  15.69  15.48  15.75  15.34   46083422  7.135471e+08       0       17.18      14.06  15.48      15.62
8 2020-09-24  15.34  15.08  15.37  15.04   37973611  5.750271e+08       0       17.03      13.93  15.14      15.48
9 2020-09-25  15.20  14.92  15.20  14.91   18540881  2.786308e+08       0       16.59      13.57  15.03      15.08
             code display_name  name  start_date    end_date   type
0     000001.XSHE         平安银行  PAYX  1991-04-03  2200-01-01  stock
1     000002.XSHE          万科A   WKA  1991-01-29  2200-01-01  stock
2     000004.XSHE         国农科技  GNKJ  1990-12-01  2200-01-01  stock
3     000005.XSHE         世纪星源  SJXY  1990-12-10  2200-01-01  stock
4     000006.XSHE         深振业A  SZYA  1992-04-27  2200-01-01  stock
...           ...          ...   ...         ...         ...    ...
4126  688596.XSHG         正帆科技  ZFKJ  2020-08-20  2200-01-01  stock
4127  688598.XSHG         金博股份  JBGF  2020-05-18  2200-01-01  stock
4128  688599.XSHG         天合光能  THGN  2020-06-10  2200-01-01  stock
4129  688600.XSHG         皖仪科技  WYKJ  2020-07-03  2200-01-01  stock
4130  688981.XSHG         中芯国际  ZXGJ  2020-07-16  2200-01-01  stock

[4131 rows x 6 columns]
               0
0     2004-11-08
1     2004-11-09
2     2004-11-10
3     2004-11-11
4     2004-11-12
...          ...
3861  2020-09-21
3862  2020-09-22
3863  2020-09-23
3864  2020-09-24
3865  2020-09-25

[3866 rows x 1 columns]
               0
0     2004-11-08
1     2004-11-09
2     2004-11-10
3     2004-11-11
4     2004-11-12
...          ...
3861  2020-09-21
3862  2020-09-22
3863  2020-09-23
3864  2020-09-24
3865  2020-09-25

[3866 rows x 1 columns]
           id         code        day     pubDate    statDate periodStart  ... retained_profit  foreign_currency_report_conv_diff  equities_parent_company_owners  minority_interests  total_owner_equities  total_sheet_owner_equities
0  28053040.0  000001.XSHE 2020-09-16  2020-08-28  2020-06-30  2020-08-28  ...    1.219440e+11                                NaN                    3.513970e+11                 NaN          3.513970e+11                4.178622e+12
1  28053042.0  000001.XSHE 2020-09-17  2020-08-28  2020-06-30  2020-08-28  ...    1.219440e+11                                NaN                    3.513970e+11                 NaN          3.513970e+11                4.178622e+12
2  28053044.0  000001.XSHE 2020-09-18  2020-08-28  2020-06-30  2020-08-28  ...    1.219440e+11                                NaN                    3.513970e+11                 NaN          3.513970e+11                4.178622e+12
3  28053044.0  000001.XSHE 2020-09-19  2020-08-28  2020-06-30  2020-08-28  ...    1.219440e+11                                NaN                    3.513970e+11                 NaN          3.513970e+11                4.178622e+12
4  28053044.0  000001.XSHE 2020-09-20  2020-08-28  2020-06-30  2020-08-28  ...    1.219440e+11                                NaN                    3.513970e+11                 NaN          3.513970e+11                4.178622e+12
5  28053046.0  000001.XSHE 2020-09-21  2020-08-28  2020-06-30  2020-08-28  ...    1.219440e+11                                NaN                    3.513970e+11                 NaN          3.513970e+11                4.178622e+12
6  28053048.0  000001.XSHE 2020-09-22  2020-08-28  2020-06-30  2020-08-28  ...    1.219440e+11                                NaN                    3.513970e+11                 NaN          3.513970e+11                4.178622e+12
7  28053048.0  000001.XSHE 2020-09-23  2020-08-28  2020-06-30  2020-08-28  ...    1.219440e+11                                NaN                    3.513970e+11                 NaN          3.513970e+11                4.178622e+12
8  28053048.0  000001.XSHE 2020-09-24  2020-08-28  2020-06-30  2020-08-28  ...    1.219440e+11                                NaN                    3.513970e+11                 NaN          3.513970e+11                4.178622e+12
9  28053050.0  000001.XSHE 2020-09-25  2020-08-28  2020-06-30  2020-08-28  ...    1.219440e+11                                NaN                    3.513970e+11                 NaN          3.513970e+11                4.178622e+12

[10 rows x 89 columns]
           date     sec_code   fin_value  fin_buy_value  fin_refund_value  sec_value  sec_sell_value  sec_refund_value  fin_sec_value
0    2010-03-31  000001.XSHE        4730           4730                 0       2100            2100                 0          53450
1    2010-04-01  000001.XSHE        4730              0                 0          0               0              2100           4730
2    2010-04-02  000001.XSHE        4712           2347              2365          0               0                 0           4712
3    2010-04-06  000001.XSHE        4712              0                 0          0               0                 0           4712
4    2010-04-07  000001.XSHE        4712              0                 0          0               0                 0           4712
...         ...          ...         ...            ...               ...        ...             ...               ...            ...
2548 2020-09-18  000001.XSHE  3919556191      238189827         270275976   67512142          120200            234200     5004476313
2549 2020-09-21  000001.XSHE  3849371241      108081360         178266310   66813349          429500           1128293     4909030957
2550 2020-09-22  000001.XSHE  3855420696      106478290         100428835   70238849         3559400            133900     4949039576
2551 2020-09-23  000001.XSHE  3744883578       71282484         181819602   71950394         1788079             76534     4869468236
2552 2020-09-24  000001.XSHE  3771133403      113139423          86889598   72439450         1561856           1072800     4866417887

[2553 rows x 9 columns]
   id  exchange_code exchange_name        date  total_market_cap  circulating_market_cap      volume      money  deal_number  pe_average  turnover_ratio
0   1         322002          上海A股  2005-01-04      25228.240618             6941.067590  80648.3466  43.888276      42.2473      23.817          0.6368
1   2         322003          上海B股  2005-01-04        298.830614              298.830614   1019.3588   0.311245       0.4442      20.065          0.1018
2   3         322001          上海市场  2005-01-04      25527.071233             7239.898204  81667.7054  44.199521      42.6915      23.768          0.5976
3   4         322006         中小企业板  2005-01-04        409.450000              118.850000    800.0000   1.190000       1.4600      31.030             NaN
4   5         322004          深圳市场  2005-01-04      10859.540000             4279.140000         NaN  24.740000          NaN      24.220          0.5300
5   6         322002          上海A股  2005-01-05      25408.493484             7022.186703  85238.5339  48.680153      52.7249      23.978          0.6731
6   7         322003          上海B股  2005-01-05        306.795402              306.795402   1597.9846   0.500740       0.6206      20.629          0.1595
7   8         322001          上海市场  2005-01-05      25715.288885             7328.982104  86836.5185  49.180893      53.3455      23.934          0.6354
8   9         322006         中小企业板  2005-01-05        415.900000              120.760000   1000.0000   1.370000       1.6800      31.520             NaN
9  10         322004          深圳市场  2005-01-05      11021.380000             4347.240000         NaN  30.500000          NaN      24.570          0.6700
```
### 联系

微信 foolcage

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/zvtvz/jqdatapy",
    "name": "jqdatapy",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "quant stock finance fintech big-data zvt technical-analysis trading-platform pandas fundamental-analysis",
    "author": "foolcage",
    "author_email": "5533061@qq.com",
    "download_url": "https://files.pythonhosted.org/packages/14/65/e03202c6c69b1cc0419685f35f6401cd1981eeda11f8ae25d9db1477c255/jqdatapy-0.1.8.tar.gz",
    "platform": null,
    "description": "[![github](https://img.shields.io/github/stars/zvtvz/jqdatapy.svg)](https://github.com/zvtvz/jqdatapy)\n[![image](https://img.shields.io/pypi/v/jqdatapy.svg)](https://pypi.org/project/jqdatapy/)\n[![image](https://img.shields.io/pypi/l/jqdatapy.svg)](https://pypi.org/project/jqdatapy/)\n[![image](https://img.shields.io/pypi/pyversions/jqdatapy.svg)](https://pypi.org/project/jqdatapy/)\n[![build](https://github.com/zvtvz/jqdatapy/actions/workflows/build.yaml/badge.svg)](https://github.com/zvtvz/jqdatapy/actions/workflows/build.yml)\n[![package](https://github.com/zvtvz/jqdatapy/actions/workflows/package.yaml/badge.svg)](https://github.com/zvtvz/jqdatapy/actions/workflows/package.yaml)\n\n### \u8bf4\u660e\njqdatapy\u4e3a\u805a\u5bbd\u6570\u636e[http\u63a5\u53e3](https://dataapi.joinquant.com/docs)\u7684python\u5c01\u88c5\uff0c\u4e3a\u5b98\u65b9[jqdatasdk](https://github.com/JoinQuant/jqdatasdk)\u7684\u8f7b\u91cf\u66ff\u4ee3\u3002\n\n\u5176\u76ee\u7684\u5728\u4e8e\u51cf\u5c11\u4f9d\u8d56\uff0c\u89e3\u51b3\u7248\u672c\u51b2\u7a81\uff0c\u5728[zvt](https://github.com/zvtvz/zvt)\u4e2d\u7528\u4e8e\u6570\u636e\u7684\u672c\u5730\u5316\uff0c\n\n### \u7279\u6027\n* \u539f\u59cb\u5c01\u88c5\uff0c\u65b9\u6cd5\u540d\u548c\u5b57\u6bb5\u8ddf\u5b98\u65b9\u6587\u6863\u4e00\u81f4\n* \u81ea\u52a8\u5316\u4fdd\u7559token\uff0c\u6309\u9700\u8bf7\u6c42\n* \u53ea\u4f9d\u8d56requests\u548cpandas(\u53ef\u7528\u6700\u65b0\u7248)\n\n### \u5b89\u88c5\n```\npip install jqdatapy\n\npip show jqdatapy\n```\n\n\u66f4\u65b0\u5230\u6700\u65b0\u7248\u672c\n```\npip install --upgrade jqdatapy\n```\n\n###  \u4f7f\u7528\n\n#### \u521d\u59cb\u5316\u73af\u5883\uff0c\u4f1a\u81ea\u52a8\u672c\u5730\u5316token\n```\nIn [1]: from jqdatapy import *\nIn [2]: init_env(username='\u805a\u5bbd\u6ce8\u518c\u624b\u673a',password='\u5bc6\u7801')\n```\n\n#### api\u4f7f\u7528\n```\nIn [5]: print(get_bars(code='000338.XSHE'))\n   ...: print(get_all_securities())\n   ...: print(get_trade_days())\n   ...: print(get_trade_days())\n   ...: print(get_fundamentals(count=10))\n   ...: print(get_mtss())\n   ...: print(run_query(count=10, parse_dates=None))\n        date   open  close   high    low     volume         money  paused  high_limit  low_limit    avg  pre_close\n0 2020-09-14  14.24  14.35  14.43  14.22   24556166  3.514904e+08       0       15.59      12.75  14.31      14.17\n1 2020-09-15  14.35  14.90  14.95  14.31   56693203  8.360576e+08       0       15.79      12.92  14.75      14.35\n2 2020-09-16  14.83  15.02  15.34  14.75   49258551  7.402552e+08       0       16.39      13.41  15.03      14.90\n3 2020-09-17  15.19  16.18  16.30  15.19  130136055  2.063710e+09       0       16.52      13.52  15.86      15.02\n4 2020-09-18  16.35  16.59  16.65  16.23  112580041  1.854240e+09       0       17.80      14.56  16.47      16.18\n5 2020-09-21  16.60  16.00  16.62  15.84   69804961  1.123414e+09       0       18.25      14.93  16.09      16.59\n6 2020-09-22  15.85  15.62  16.04  15.54   50336697  7.942570e+08       0       17.60      14.40  15.78      16.00\n7 2020-09-23  15.69  15.48  15.75  15.34   46083422  7.135471e+08       0       17.18      14.06  15.48      15.62\n8 2020-09-24  15.34  15.08  15.37  15.04   37973611  5.750271e+08       0       17.03      13.93  15.14      15.48\n9 2020-09-25  15.20  14.92  15.20  14.91   18540881  2.786308e+08       0       16.59      13.57  15.03      15.08\n             code display_name  name  start_date    end_date   type\n0     000001.XSHE         \u5e73\u5b89\u94f6\u884c  PAYX  1991-04-03  2200-01-01  stock\n1     000002.XSHE          \u4e07\u79d1A   WKA  1991-01-29  2200-01-01  stock\n2     000004.XSHE         \u56fd\u519c\u79d1\u6280  GNKJ  1990-12-01  2200-01-01  stock\n3     000005.XSHE         \u4e16\u7eaa\u661f\u6e90  SJXY  1990-12-10  2200-01-01  stock\n4     000006.XSHE         \u6df1\u632f\u4e1aA  SZYA  1992-04-27  2200-01-01  stock\n...           ...          ...   ...         ...         ...    ...\n4126  688596.XSHG         \u6b63\u5e06\u79d1\u6280  ZFKJ  2020-08-20  2200-01-01  stock\n4127  688598.XSHG         \u91d1\u535a\u80a1\u4efd  JBGF  2020-05-18  2200-01-01  stock\n4128  688599.XSHG         \u5929\u5408\u5149\u80fd  THGN  2020-06-10  2200-01-01  stock\n4129  688600.XSHG         \u7696\u4eea\u79d1\u6280  WYKJ  2020-07-03  2200-01-01  stock\n4130  688981.XSHG         \u4e2d\u82af\u56fd\u9645  ZXGJ  2020-07-16  2200-01-01  stock\n\n[4131 rows x 6 columns]\n               0\n0     2004-11-08\n1     2004-11-09\n2     2004-11-10\n3     2004-11-11\n4     2004-11-12\n...          ...\n3861  2020-09-21\n3862  2020-09-22\n3863  2020-09-23\n3864  2020-09-24\n3865  2020-09-25\n\n[3866 rows x 1 columns]\n               0\n0     2004-11-08\n1     2004-11-09\n2     2004-11-10\n3     2004-11-11\n4     2004-11-12\n...          ...\n3861  2020-09-21\n3862  2020-09-22\n3863  2020-09-23\n3864  2020-09-24\n3865  2020-09-25\n\n[3866 rows x 1 columns]\n           id         code        day     pubDate    statDate periodStart  ... retained_profit  foreign_currency_report_conv_diff  equities_parent_company_owners  minority_interests  total_owner_equities  total_sheet_owner_equities\n0  28053040.0  000001.XSHE 2020-09-16  2020-08-28  2020-06-30  2020-08-28  ...    1.219440e+11                                NaN                    3.513970e+11                 NaN          3.513970e+11                4.178622e+12\n1  28053042.0  000001.XSHE 2020-09-17  2020-08-28  2020-06-30  2020-08-28  ...    1.219440e+11                                NaN                    3.513970e+11                 NaN          3.513970e+11                4.178622e+12\n2  28053044.0  000001.XSHE 2020-09-18  2020-08-28  2020-06-30  2020-08-28  ...    1.219440e+11                                NaN                    3.513970e+11                 NaN          3.513970e+11                4.178622e+12\n3  28053044.0  000001.XSHE 2020-09-19  2020-08-28  2020-06-30  2020-08-28  ...    1.219440e+11                                NaN                    3.513970e+11                 NaN          3.513970e+11                4.178622e+12\n4  28053044.0  000001.XSHE 2020-09-20  2020-08-28  2020-06-30  2020-08-28  ...    1.219440e+11                                NaN                    3.513970e+11                 NaN          3.513970e+11                4.178622e+12\n5  28053046.0  000001.XSHE 2020-09-21  2020-08-28  2020-06-30  2020-08-28  ...    1.219440e+11                                NaN                    3.513970e+11                 NaN          3.513970e+11                4.178622e+12\n6  28053048.0  000001.XSHE 2020-09-22  2020-08-28  2020-06-30  2020-08-28  ...    1.219440e+11                                NaN                    3.513970e+11                 NaN          3.513970e+11                4.178622e+12\n7  28053048.0  000001.XSHE 2020-09-23  2020-08-28  2020-06-30  2020-08-28  ...    1.219440e+11                                NaN                    3.513970e+11                 NaN          3.513970e+11                4.178622e+12\n8  28053048.0  000001.XSHE 2020-09-24  2020-08-28  2020-06-30  2020-08-28  ...    1.219440e+11                                NaN                    3.513970e+11                 NaN          3.513970e+11                4.178622e+12\n9  28053050.0  000001.XSHE 2020-09-25  2020-08-28  2020-06-30  2020-08-28  ...    1.219440e+11                                NaN                    3.513970e+11                 NaN          3.513970e+11                4.178622e+12\n\n[10 rows x 89 columns]\n           date     sec_code   fin_value  fin_buy_value  fin_refund_value  sec_value  sec_sell_value  sec_refund_value  fin_sec_value\n0    2010-03-31  000001.XSHE        4730           4730                 0       2100            2100                 0          53450\n1    2010-04-01  000001.XSHE        4730              0                 0          0               0              2100           4730\n2    2010-04-02  000001.XSHE        4712           2347              2365          0               0                 0           4712\n3    2010-04-06  000001.XSHE        4712              0                 0          0               0                 0           4712\n4    2010-04-07  000001.XSHE        4712              0                 0          0               0                 0           4712\n...         ...          ...         ...            ...               ...        ...             ...               ...            ...\n2548 2020-09-18  000001.XSHE  3919556191      238189827         270275976   67512142          120200            234200     5004476313\n2549 2020-09-21  000001.XSHE  3849371241      108081360         178266310   66813349          429500           1128293     4909030957\n2550 2020-09-22  000001.XSHE  3855420696      106478290         100428835   70238849         3559400            133900     4949039576\n2551 2020-09-23  000001.XSHE  3744883578       71282484         181819602   71950394         1788079             76534     4869468236\n2552 2020-09-24  000001.XSHE  3771133403      113139423          86889598   72439450         1561856           1072800     4866417887\n\n[2553 rows x 9 columns]\n   id  exchange_code exchange_name        date  total_market_cap  circulating_market_cap      volume      money  deal_number  pe_average  turnover_ratio\n0   1         322002          \u4e0a\u6d77A\u80a1  2005-01-04      25228.240618             6941.067590  80648.3466  43.888276      42.2473      23.817          0.6368\n1   2         322003          \u4e0a\u6d77B\u80a1  2005-01-04        298.830614              298.830614   1019.3588   0.311245       0.4442      20.065          0.1018\n2   3         322001          \u4e0a\u6d77\u5e02\u573a  2005-01-04      25527.071233             7239.898204  81667.7054  44.199521      42.6915      23.768          0.5976\n3   4         322006         \u4e2d\u5c0f\u4f01\u4e1a\u677f  2005-01-04        409.450000              118.850000    800.0000   1.190000       1.4600      31.030             NaN\n4   5         322004          \u6df1\u5733\u5e02\u573a  2005-01-04      10859.540000             4279.140000         NaN  24.740000          NaN      24.220          0.5300\n5   6         322002          \u4e0a\u6d77A\u80a1  2005-01-05      25408.493484             7022.186703  85238.5339  48.680153      52.7249      23.978          0.6731\n6   7         322003          \u4e0a\u6d77B\u80a1  2005-01-05        306.795402              306.795402   1597.9846   0.500740       0.6206      20.629          0.1595\n7   8         322001          \u4e0a\u6d77\u5e02\u573a  2005-01-05      25715.288885             7328.982104  86836.5185  49.180893      53.3455      23.934          0.6354\n8   9         322006         \u4e2d\u5c0f\u4f01\u4e1a\u677f  2005-01-05        415.900000              120.760000   1000.0000   1.370000       1.6800      31.520             NaN\n9  10         322004          \u6df1\u5733\u5e02\u573a  2005-01-05      11021.380000             4347.240000         NaN  30.500000          NaN      24.570          0.6700\n```\n### \u8054\u7cfb\n\n\u5fae\u4fe1 foolcage\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "unified,modular quantitative system for human beings",
    "version": "0.1.8",
    "project_urls": {
        "Bug Reports": "https://github.com/zvtvz/jqdatapy/issues",
        "Funding": "https://www.foolcage.com/zvt",
        "Homepage": "https://github.com/zvtvz/jqdatapy",
        "Say Thanks!": "https://saythanks.io/to/foolcage",
        "Source": "https://github.com/zvtvz/jqdatapy"
    },
    "split_keywords": [
        "quant",
        "stock",
        "finance",
        "fintech",
        "big-data",
        "zvt",
        "technical-analysis",
        "trading-platform",
        "pandas",
        "fundamental-analysis"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e149e263252f4852295f100cc6ae39e23cbbe9189513804a2ac06ca577ed9b47",
                "md5": "557ec08d7851a1295b020a1975131989",
                "sha256": "66cd5c087e139546e214dddbe4e65f2ce1cd8f9417912304c9350e97dedc81a0"
            },
            "downloads": -1,
            "filename": "jqdatapy-0.1.8-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "557ec08d7851a1295b020a1975131989",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 9586,
            "upload_time": "2022-05-17T15:17:47",
            "upload_time_iso_8601": "2022-05-17T15:17:47.964256Z",
            "url": "https://files.pythonhosted.org/packages/e1/49/e263252f4852295f100cc6ae39e23cbbe9189513804a2ac06ca577ed9b47/jqdatapy-0.1.8-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1465e03202c6c69b1cc0419685f35f6401cd1981eeda11f8ae25d9db1477c255",
                "md5": "2bbdec777919411b66c5ad6cddddefd6",
                "sha256": "b9cd6d26bead718ad5aa9bbc7cf8858271eb6d7cad6549988e2d1265cd2a576c"
            },
            "downloads": -1,
            "filename": "jqdatapy-0.1.8.tar.gz",
            "has_sig": false,
            "md5_digest": "2bbdec777919411b66c5ad6cddddefd6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 13002,
            "upload_time": "2022-05-17T15:17:49",
            "upload_time_iso_8601": "2022-05-17T15:17:49.354392Z",
            "url": "https://files.pythonhosted.org/packages/14/65/e03202c6c69b1cc0419685f35f6401cd1981eeda11f8ae25d9db1477c255/jqdatapy-0.1.8.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-05-17 15:17:49",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "zvtvz",
    "github_project": "jqdatapy",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "requests",
            "specs": [
                [
                    ">=",
                    "2.20.1"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    ">=",
                    "0.25.3"
                ]
            ]
        }
    ],
    "lcname": "jqdatapy"
}
        
Elapsed time: 3.51050s