[![github](https://img.shields.io/github/stars/zvtvz/jqdatapy.svg)](https://github.com/zvtvz/jqdatapy)
[![image](https://img.shields.io/pypi/v/jqdatapy.svg)](https://pypi.org/project/jqdatapy/)
[![image](https://img.shields.io/pypi/l/jqdatapy.svg)](https://pypi.org/project/jqdatapy/)
[![image](https://img.shields.io/pypi/pyversions/jqdatapy.svg)](https://pypi.org/project/jqdatapy/)
[![build](https://github.com/zvtvz/jqdatapy/actions/workflows/build.yaml/badge.svg)](https://github.com/zvtvz/jqdatapy/actions/workflows/build.yml)
[![package](https://github.com/zvtvz/jqdatapy/actions/workflows/package.yaml/badge.svg)](https://github.com/zvtvz/jqdatapy/actions/workflows/package.yaml)
### 说明
jqdatapy为聚宽数据[http接口](https://dataapi.joinquant.com/docs)的python封装,为官方[jqdatasdk](https://github.com/JoinQuant/jqdatasdk)的轻量替代。
其目的在于减少依赖,解决版本冲突,在[zvt](https://github.com/zvtvz/zvt)中用于数据的本地化,
### 特性
* 原始封装,方法名和字段跟官方文档一致
* 自动化保留token,按需请求
* 只依赖requests和pandas(可用最新版)
### 安装
```
pip install jqdatapy
pip show jqdatapy
```
更新到最新版本
```
pip install --upgrade jqdatapy
```
### 使用
#### 初始化环境,会自动本地化token
```
In [1]: from jqdatapy import *
In [2]: init_env(username='聚宽注册手机',password='密码')
```
#### api使用
```
In [5]: print(get_bars(code='000338.XSHE'))
...: print(get_all_securities())
...: print(get_trade_days())
...: print(get_trade_days())
...: print(get_fundamentals(count=10))
...: print(get_mtss())
...: print(run_query(count=10, parse_dates=None))
date open close high low volume money paused high_limit low_limit avg pre_close
0 2020-09-14 14.24 14.35 14.43 14.22 24556166 3.514904e+08 0 15.59 12.75 14.31 14.17
1 2020-09-15 14.35 14.90 14.95 14.31 56693203 8.360576e+08 0 15.79 12.92 14.75 14.35
2 2020-09-16 14.83 15.02 15.34 14.75 49258551 7.402552e+08 0 16.39 13.41 15.03 14.90
3 2020-09-17 15.19 16.18 16.30 15.19 130136055 2.063710e+09 0 16.52 13.52 15.86 15.02
4 2020-09-18 16.35 16.59 16.65 16.23 112580041 1.854240e+09 0 17.80 14.56 16.47 16.18
5 2020-09-21 16.60 16.00 16.62 15.84 69804961 1.123414e+09 0 18.25 14.93 16.09 16.59
6 2020-09-22 15.85 15.62 16.04 15.54 50336697 7.942570e+08 0 17.60 14.40 15.78 16.00
7 2020-09-23 15.69 15.48 15.75 15.34 46083422 7.135471e+08 0 17.18 14.06 15.48 15.62
8 2020-09-24 15.34 15.08 15.37 15.04 37973611 5.750271e+08 0 17.03 13.93 15.14 15.48
9 2020-09-25 15.20 14.92 15.20 14.91 18540881 2.786308e+08 0 16.59 13.57 15.03 15.08
code display_name name start_date end_date type
0 000001.XSHE 平安银行 PAYX 1991-04-03 2200-01-01 stock
1 000002.XSHE 万科A WKA 1991-01-29 2200-01-01 stock
2 000004.XSHE 国农科技 GNKJ 1990-12-01 2200-01-01 stock
3 000005.XSHE 世纪星源 SJXY 1990-12-10 2200-01-01 stock
4 000006.XSHE 深振业A SZYA 1992-04-27 2200-01-01 stock
... ... ... ... ... ... ...
4126 688596.XSHG 正帆科技 ZFKJ 2020-08-20 2200-01-01 stock
4127 688598.XSHG 金博股份 JBGF 2020-05-18 2200-01-01 stock
4128 688599.XSHG 天合光能 THGN 2020-06-10 2200-01-01 stock
4129 688600.XSHG 皖仪科技 WYKJ 2020-07-03 2200-01-01 stock
4130 688981.XSHG 中芯国际 ZXGJ 2020-07-16 2200-01-01 stock
[4131 rows x 6 columns]
0
0 2004-11-08
1 2004-11-09
2 2004-11-10
3 2004-11-11
4 2004-11-12
... ...
3861 2020-09-21
3862 2020-09-22
3863 2020-09-23
3864 2020-09-24
3865 2020-09-25
[3866 rows x 1 columns]
0
0 2004-11-08
1 2004-11-09
2 2004-11-10
3 2004-11-11
4 2004-11-12
... ...
3861 2020-09-21
3862 2020-09-22
3863 2020-09-23
3864 2020-09-24
3865 2020-09-25
[3866 rows x 1 columns]
id code day pubDate statDate periodStart ... retained_profit foreign_currency_report_conv_diff equities_parent_company_owners minority_interests total_owner_equities total_sheet_owner_equities
0 28053040.0 000001.XSHE 2020-09-16 2020-08-28 2020-06-30 2020-08-28 ... 1.219440e+11 NaN 3.513970e+11 NaN 3.513970e+11 4.178622e+12
1 28053042.0 000001.XSHE 2020-09-17 2020-08-28 2020-06-30 2020-08-28 ... 1.219440e+11 NaN 3.513970e+11 NaN 3.513970e+11 4.178622e+12
2 28053044.0 000001.XSHE 2020-09-18 2020-08-28 2020-06-30 2020-08-28 ... 1.219440e+11 NaN 3.513970e+11 NaN 3.513970e+11 4.178622e+12
3 28053044.0 000001.XSHE 2020-09-19 2020-08-28 2020-06-30 2020-08-28 ... 1.219440e+11 NaN 3.513970e+11 NaN 3.513970e+11 4.178622e+12
4 28053044.0 000001.XSHE 2020-09-20 2020-08-28 2020-06-30 2020-08-28 ... 1.219440e+11 NaN 3.513970e+11 NaN 3.513970e+11 4.178622e+12
5 28053046.0 000001.XSHE 2020-09-21 2020-08-28 2020-06-30 2020-08-28 ... 1.219440e+11 NaN 3.513970e+11 NaN 3.513970e+11 4.178622e+12
6 28053048.0 000001.XSHE 2020-09-22 2020-08-28 2020-06-30 2020-08-28 ... 1.219440e+11 NaN 3.513970e+11 NaN 3.513970e+11 4.178622e+12
7 28053048.0 000001.XSHE 2020-09-23 2020-08-28 2020-06-30 2020-08-28 ... 1.219440e+11 NaN 3.513970e+11 NaN 3.513970e+11 4.178622e+12
8 28053048.0 000001.XSHE 2020-09-24 2020-08-28 2020-06-30 2020-08-28 ... 1.219440e+11 NaN 3.513970e+11 NaN 3.513970e+11 4.178622e+12
9 28053050.0 000001.XSHE 2020-09-25 2020-08-28 2020-06-30 2020-08-28 ... 1.219440e+11 NaN 3.513970e+11 NaN 3.513970e+11 4.178622e+12
[10 rows x 89 columns]
date sec_code fin_value fin_buy_value fin_refund_value sec_value sec_sell_value sec_refund_value fin_sec_value
0 2010-03-31 000001.XSHE 4730 4730 0 2100 2100 0 53450
1 2010-04-01 000001.XSHE 4730 0 0 0 0 2100 4730
2 2010-04-02 000001.XSHE 4712 2347 2365 0 0 0 4712
3 2010-04-06 000001.XSHE 4712 0 0 0 0 0 4712
4 2010-04-07 000001.XSHE 4712 0 0 0 0 0 4712
... ... ... ... ... ... ... ... ... ...
2548 2020-09-18 000001.XSHE 3919556191 238189827 270275976 67512142 120200 234200 5004476313
2549 2020-09-21 000001.XSHE 3849371241 108081360 178266310 66813349 429500 1128293 4909030957
2550 2020-09-22 000001.XSHE 3855420696 106478290 100428835 70238849 3559400 133900 4949039576
2551 2020-09-23 000001.XSHE 3744883578 71282484 181819602 71950394 1788079 76534 4869468236
2552 2020-09-24 000001.XSHE 3771133403 113139423 86889598 72439450 1561856 1072800 4866417887
[2553 rows x 9 columns]
id exchange_code exchange_name date total_market_cap circulating_market_cap volume money deal_number pe_average turnover_ratio
0 1 322002 上海A股 2005-01-04 25228.240618 6941.067590 80648.3466 43.888276 42.2473 23.817 0.6368
1 2 322003 上海B股 2005-01-04 298.830614 298.830614 1019.3588 0.311245 0.4442 20.065 0.1018
2 3 322001 上海市场 2005-01-04 25527.071233 7239.898204 81667.7054 44.199521 42.6915 23.768 0.5976
3 4 322006 中小企业板 2005-01-04 409.450000 118.850000 800.0000 1.190000 1.4600 31.030 NaN
4 5 322004 深圳市场 2005-01-04 10859.540000 4279.140000 NaN 24.740000 NaN 24.220 0.5300
5 6 322002 上海A股 2005-01-05 25408.493484 7022.186703 85238.5339 48.680153 52.7249 23.978 0.6731
6 7 322003 上海B股 2005-01-05 306.795402 306.795402 1597.9846 0.500740 0.6206 20.629 0.1595
7 8 322001 上海市场 2005-01-05 25715.288885 7328.982104 86836.5185 49.180893 53.3455 23.934 0.6354
8 9 322006 中小企业板 2005-01-05 415.900000 120.760000 1000.0000 1.370000 1.6800 31.520 NaN
9 10 322004 深圳市场 2005-01-05 11021.380000 4347.240000 NaN 30.500000 NaN 24.570 0.6700
```
### 联系
微信 foolcage
Raw data
{
"_id": null,
"home_page": "https://github.com/zvtvz/jqdatapy",
"name": "jqdatapy",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "quant stock finance fintech big-data zvt technical-analysis trading-platform pandas fundamental-analysis",
"author": "foolcage",
"author_email": "5533061@qq.com",
"download_url": "https://files.pythonhosted.org/packages/14/65/e03202c6c69b1cc0419685f35f6401cd1981eeda11f8ae25d9db1477c255/jqdatapy-0.1.8.tar.gz",
"platform": null,
"description": "[![github](https://img.shields.io/github/stars/zvtvz/jqdatapy.svg)](https://github.com/zvtvz/jqdatapy)\n[![image](https://img.shields.io/pypi/v/jqdatapy.svg)](https://pypi.org/project/jqdatapy/)\n[![image](https://img.shields.io/pypi/l/jqdatapy.svg)](https://pypi.org/project/jqdatapy/)\n[![image](https://img.shields.io/pypi/pyversions/jqdatapy.svg)](https://pypi.org/project/jqdatapy/)\n[![build](https://github.com/zvtvz/jqdatapy/actions/workflows/build.yaml/badge.svg)](https://github.com/zvtvz/jqdatapy/actions/workflows/build.yml)\n[![package](https://github.com/zvtvz/jqdatapy/actions/workflows/package.yaml/badge.svg)](https://github.com/zvtvz/jqdatapy/actions/workflows/package.yaml)\n\n### \u8bf4\u660e\njqdatapy\u4e3a\u805a\u5bbd\u6570\u636e[http\u63a5\u53e3](https://dataapi.joinquant.com/docs)\u7684python\u5c01\u88c5\uff0c\u4e3a\u5b98\u65b9[jqdatasdk](https://github.com/JoinQuant/jqdatasdk)\u7684\u8f7b\u91cf\u66ff\u4ee3\u3002\n\n\u5176\u76ee\u7684\u5728\u4e8e\u51cf\u5c11\u4f9d\u8d56\uff0c\u89e3\u51b3\u7248\u672c\u51b2\u7a81\uff0c\u5728[zvt](https://github.com/zvtvz/zvt)\u4e2d\u7528\u4e8e\u6570\u636e\u7684\u672c\u5730\u5316\uff0c\n\n### \u7279\u6027\n* \u539f\u59cb\u5c01\u88c5\uff0c\u65b9\u6cd5\u540d\u548c\u5b57\u6bb5\u8ddf\u5b98\u65b9\u6587\u6863\u4e00\u81f4\n* \u81ea\u52a8\u5316\u4fdd\u7559token\uff0c\u6309\u9700\u8bf7\u6c42\n* \u53ea\u4f9d\u8d56requests\u548cpandas(\u53ef\u7528\u6700\u65b0\u7248)\n\n### \u5b89\u88c5\n```\npip install jqdatapy\n\npip show jqdatapy\n```\n\n\u66f4\u65b0\u5230\u6700\u65b0\u7248\u672c\n```\npip install --upgrade jqdatapy\n```\n\n### \u4f7f\u7528\n\n#### \u521d\u59cb\u5316\u73af\u5883\uff0c\u4f1a\u81ea\u52a8\u672c\u5730\u5316token\n```\nIn [1]: from jqdatapy import *\nIn [2]: init_env(username='\u805a\u5bbd\u6ce8\u518c\u624b\u673a',password='\u5bc6\u7801')\n```\n\n#### api\u4f7f\u7528\n```\nIn [5]: print(get_bars(code='000338.XSHE'))\n ...: print(get_all_securities())\n ...: print(get_trade_days())\n ...: print(get_trade_days())\n ...: print(get_fundamentals(count=10))\n ...: print(get_mtss())\n ...: print(run_query(count=10, parse_dates=None))\n date open close high low volume money paused high_limit low_limit avg pre_close\n0 2020-09-14 14.24 14.35 14.43 14.22 24556166 3.514904e+08 0 15.59 12.75 14.31 14.17\n1 2020-09-15 14.35 14.90 14.95 14.31 56693203 8.360576e+08 0 15.79 12.92 14.75 14.35\n2 2020-09-16 14.83 15.02 15.34 14.75 49258551 7.402552e+08 0 16.39 13.41 15.03 14.90\n3 2020-09-17 15.19 16.18 16.30 15.19 130136055 2.063710e+09 0 16.52 13.52 15.86 15.02\n4 2020-09-18 16.35 16.59 16.65 16.23 112580041 1.854240e+09 0 17.80 14.56 16.47 16.18\n5 2020-09-21 16.60 16.00 16.62 15.84 69804961 1.123414e+09 0 18.25 14.93 16.09 16.59\n6 2020-09-22 15.85 15.62 16.04 15.54 50336697 7.942570e+08 0 17.60 14.40 15.78 16.00\n7 2020-09-23 15.69 15.48 15.75 15.34 46083422 7.135471e+08 0 17.18 14.06 15.48 15.62\n8 2020-09-24 15.34 15.08 15.37 15.04 37973611 5.750271e+08 0 17.03 13.93 15.14 15.48\n9 2020-09-25 15.20 14.92 15.20 14.91 18540881 2.786308e+08 0 16.59 13.57 15.03 15.08\n code display_name name start_date end_date type\n0 000001.XSHE \u5e73\u5b89\u94f6\u884c PAYX 1991-04-03 2200-01-01 stock\n1 000002.XSHE \u4e07\u79d1A WKA 1991-01-29 2200-01-01 stock\n2 000004.XSHE \u56fd\u519c\u79d1\u6280 GNKJ 1990-12-01 2200-01-01 stock\n3 000005.XSHE \u4e16\u7eaa\u661f\u6e90 SJXY 1990-12-10 2200-01-01 stock\n4 000006.XSHE \u6df1\u632f\u4e1aA SZYA 1992-04-27 2200-01-01 stock\n... ... ... ... ... ... ...\n4126 688596.XSHG \u6b63\u5e06\u79d1\u6280 ZFKJ 2020-08-20 2200-01-01 stock\n4127 688598.XSHG \u91d1\u535a\u80a1\u4efd JBGF 2020-05-18 2200-01-01 stock\n4128 688599.XSHG \u5929\u5408\u5149\u80fd THGN 2020-06-10 2200-01-01 stock\n4129 688600.XSHG \u7696\u4eea\u79d1\u6280 WYKJ 2020-07-03 2200-01-01 stock\n4130 688981.XSHG \u4e2d\u82af\u56fd\u9645 ZXGJ 2020-07-16 2200-01-01 stock\n\n[4131 rows x 6 columns]\n 0\n0 2004-11-08\n1 2004-11-09\n2 2004-11-10\n3 2004-11-11\n4 2004-11-12\n... ...\n3861 2020-09-21\n3862 2020-09-22\n3863 2020-09-23\n3864 2020-09-24\n3865 2020-09-25\n\n[3866 rows x 1 columns]\n 0\n0 2004-11-08\n1 2004-11-09\n2 2004-11-10\n3 2004-11-11\n4 2004-11-12\n... ...\n3861 2020-09-21\n3862 2020-09-22\n3863 2020-09-23\n3864 2020-09-24\n3865 2020-09-25\n\n[3866 rows x 1 columns]\n id code day pubDate statDate periodStart ... retained_profit foreign_currency_report_conv_diff equities_parent_company_owners minority_interests total_owner_equities total_sheet_owner_equities\n0 28053040.0 000001.XSHE 2020-09-16 2020-08-28 2020-06-30 2020-08-28 ... 1.219440e+11 NaN 3.513970e+11 NaN 3.513970e+11 4.178622e+12\n1 28053042.0 000001.XSHE 2020-09-17 2020-08-28 2020-06-30 2020-08-28 ... 1.219440e+11 NaN 3.513970e+11 NaN 3.513970e+11 4.178622e+12\n2 28053044.0 000001.XSHE 2020-09-18 2020-08-28 2020-06-30 2020-08-28 ... 1.219440e+11 NaN 3.513970e+11 NaN 3.513970e+11 4.178622e+12\n3 28053044.0 000001.XSHE 2020-09-19 2020-08-28 2020-06-30 2020-08-28 ... 1.219440e+11 NaN 3.513970e+11 NaN 3.513970e+11 4.178622e+12\n4 28053044.0 000001.XSHE 2020-09-20 2020-08-28 2020-06-30 2020-08-28 ... 1.219440e+11 NaN 3.513970e+11 NaN 3.513970e+11 4.178622e+12\n5 28053046.0 000001.XSHE 2020-09-21 2020-08-28 2020-06-30 2020-08-28 ... 1.219440e+11 NaN 3.513970e+11 NaN 3.513970e+11 4.178622e+12\n6 28053048.0 000001.XSHE 2020-09-22 2020-08-28 2020-06-30 2020-08-28 ... 1.219440e+11 NaN 3.513970e+11 NaN 3.513970e+11 4.178622e+12\n7 28053048.0 000001.XSHE 2020-09-23 2020-08-28 2020-06-30 2020-08-28 ... 1.219440e+11 NaN 3.513970e+11 NaN 3.513970e+11 4.178622e+12\n8 28053048.0 000001.XSHE 2020-09-24 2020-08-28 2020-06-30 2020-08-28 ... 1.219440e+11 NaN 3.513970e+11 NaN 3.513970e+11 4.178622e+12\n9 28053050.0 000001.XSHE 2020-09-25 2020-08-28 2020-06-30 2020-08-28 ... 1.219440e+11 NaN 3.513970e+11 NaN 3.513970e+11 4.178622e+12\n\n[10 rows x 89 columns]\n date sec_code fin_value fin_buy_value fin_refund_value sec_value sec_sell_value sec_refund_value fin_sec_value\n0 2010-03-31 000001.XSHE 4730 4730 0 2100 2100 0 53450\n1 2010-04-01 000001.XSHE 4730 0 0 0 0 2100 4730\n2 2010-04-02 000001.XSHE 4712 2347 2365 0 0 0 4712\n3 2010-04-06 000001.XSHE 4712 0 0 0 0 0 4712\n4 2010-04-07 000001.XSHE 4712 0 0 0 0 0 4712\n... ... ... ... ... ... ... ... ... ...\n2548 2020-09-18 000001.XSHE 3919556191 238189827 270275976 67512142 120200 234200 5004476313\n2549 2020-09-21 000001.XSHE 3849371241 108081360 178266310 66813349 429500 1128293 4909030957\n2550 2020-09-22 000001.XSHE 3855420696 106478290 100428835 70238849 3559400 133900 4949039576\n2551 2020-09-23 000001.XSHE 3744883578 71282484 181819602 71950394 1788079 76534 4869468236\n2552 2020-09-24 000001.XSHE 3771133403 113139423 86889598 72439450 1561856 1072800 4866417887\n\n[2553 rows x 9 columns]\n id exchange_code exchange_name date total_market_cap circulating_market_cap volume money deal_number pe_average turnover_ratio\n0 1 322002 \u4e0a\u6d77A\u80a1 2005-01-04 25228.240618 6941.067590 80648.3466 43.888276 42.2473 23.817 0.6368\n1 2 322003 \u4e0a\u6d77B\u80a1 2005-01-04 298.830614 298.830614 1019.3588 0.311245 0.4442 20.065 0.1018\n2 3 322001 \u4e0a\u6d77\u5e02\u573a 2005-01-04 25527.071233 7239.898204 81667.7054 44.199521 42.6915 23.768 0.5976\n3 4 322006 \u4e2d\u5c0f\u4f01\u4e1a\u677f 2005-01-04 409.450000 118.850000 800.0000 1.190000 1.4600 31.030 NaN\n4 5 322004 \u6df1\u5733\u5e02\u573a 2005-01-04 10859.540000 4279.140000 NaN 24.740000 NaN 24.220 0.5300\n5 6 322002 \u4e0a\u6d77A\u80a1 2005-01-05 25408.493484 7022.186703 85238.5339 48.680153 52.7249 23.978 0.6731\n6 7 322003 \u4e0a\u6d77B\u80a1 2005-01-05 306.795402 306.795402 1597.9846 0.500740 0.6206 20.629 0.1595\n7 8 322001 \u4e0a\u6d77\u5e02\u573a 2005-01-05 25715.288885 7328.982104 86836.5185 49.180893 53.3455 23.934 0.6354\n8 9 322006 \u4e2d\u5c0f\u4f01\u4e1a\u677f 2005-01-05 415.900000 120.760000 1000.0000 1.370000 1.6800 31.520 NaN\n9 10 322004 \u6df1\u5733\u5e02\u573a 2005-01-05 11021.380000 4347.240000 NaN 30.500000 NaN 24.570 0.6700\n```\n### \u8054\u7cfb\n\n\u5fae\u4fe1 foolcage\n",
"bugtrack_url": null,
"license": "",
"summary": "unified,modular quantitative system for human beings",
"version": "0.1.8",
"project_urls": {
"Bug Reports": "https://github.com/zvtvz/jqdatapy/issues",
"Funding": "https://www.foolcage.com/zvt",
"Homepage": "https://github.com/zvtvz/jqdatapy",
"Say Thanks!": "https://saythanks.io/to/foolcage",
"Source": "https://github.com/zvtvz/jqdatapy"
},
"split_keywords": [
"quant",
"stock",
"finance",
"fintech",
"big-data",
"zvt",
"technical-analysis",
"trading-platform",
"pandas",
"fundamental-analysis"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "e149e263252f4852295f100cc6ae39e23cbbe9189513804a2ac06ca577ed9b47",
"md5": "557ec08d7851a1295b020a1975131989",
"sha256": "66cd5c087e139546e214dddbe4e65f2ce1cd8f9417912304c9350e97dedc81a0"
},
"downloads": -1,
"filename": "jqdatapy-0.1.8-py3-none-any.whl",
"has_sig": false,
"md5_digest": "557ec08d7851a1295b020a1975131989",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 9586,
"upload_time": "2022-05-17T15:17:47",
"upload_time_iso_8601": "2022-05-17T15:17:47.964256Z",
"url": "https://files.pythonhosted.org/packages/e1/49/e263252f4852295f100cc6ae39e23cbbe9189513804a2ac06ca577ed9b47/jqdatapy-0.1.8-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1465e03202c6c69b1cc0419685f35f6401cd1981eeda11f8ae25d9db1477c255",
"md5": "2bbdec777919411b66c5ad6cddddefd6",
"sha256": "b9cd6d26bead718ad5aa9bbc7cf8858271eb6d7cad6549988e2d1265cd2a576c"
},
"downloads": -1,
"filename": "jqdatapy-0.1.8.tar.gz",
"has_sig": false,
"md5_digest": "2bbdec777919411b66c5ad6cddddefd6",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 13002,
"upload_time": "2022-05-17T15:17:49",
"upload_time_iso_8601": "2022-05-17T15:17:49.354392Z",
"url": "https://files.pythonhosted.org/packages/14/65/e03202c6c69b1cc0419685f35f6401cd1981eeda11f8ae25d9db1477c255/jqdatapy-0.1.8.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2022-05-17 15:17:49",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "zvtvz",
"github_project": "jqdatapy",
"travis_ci": true,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "requests",
"specs": [
[
">=",
"2.20.1"
]
]
},
{
"name": "pandas",
"specs": [
[
">=",
"0.25.3"
]
]
}
],
"lcname": "jqdatapy"
}