jsonbourne


Namejsonbourne JSON
Version 0.29.0 PyPI version JSON
download
home_pagehttps://github.com/dynamic-graphics-inc/dgpy-libs/tree/main/libs/jsonbourne
SummaryEZPZ JSON
upload_time2024-05-01 17:30:32
maintainerNone
docs_urlNone
authorjesse
requires_python<4.0,>=3.8
licenseMIT
keywords dgpy pydantic json orjson rapidjson
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <a href="https://github.com/dynamic-graphics-inc/dgpy-libs">
<img align="right" src="https://github.com/dynamic-graphics-inc/dgpy-libs/blob/main/docs/images/dgpy_banner.svg?raw=true" alt="drawing" height="120" width="300"/>
</a>

# jsonbourne

[![Wheel](https://img.shields.io/pypi/wheel/jsonbourne.svg)](https://img.shields.io/pypi/wheel/jsonbourne.svg)
[![Version](https://img.shields.io/pypi/v/jsonbourne.svg)](https://img.shields.io/pypi/v/jsonbourne.svg)
[![py_versions](https://img.shields.io/pypi/pyversions/jsonbourne.svg)](https://img.shields.io/pypi/pyversions/jsonbourne.svg)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)

**Install:** `pip install jsonbourne`

- Python json lib/pkg that makes json feel like the JSON module in javascript/typescript:
  - `from jsonbourne import JSON; JSON.parse(JSON.stringify({"key": "value"}))`
  - Automatically uses best json-lib-backend available (`orjson`/`python-rapidjson`) ~ can be configured
- Hybrid dict/class object (`jsonbourne.JsonObj`):
  - Dot-notation getting/setting (featuring protected attributes!)
  - All your favorite python dictionary methods (`items`, `keys`, `update`, `values`) and more!
  - Works with `pydantic` and `attrs`
- FastAPI:
  - JSONBOURNEResponse ~ auto use the best
- No hard dependencies ~ works with python-stdlib-json as well as `orjson` and `python-rapidjson`
- `jsonbourne.JsonObj` uses list/dict comprehensions (some are recursive) everywhere because 'why not?' and it is a bit faster

## Usage:

### JSON ~ `from jsonbourne import JSON`

**Importing:**

```python
# Importing JSON:
from jsonbourne import JSON

# or
import JSON

# Importing jsonbourne:
import jsonbourne
import david_webb  # jsonbourne's `True` identity
```

**JSON basics:**

```python
import JSON  # Module included with jsonbourne

string_stringify = JSON.stringify(
    {"a": 1, "b": 2, "c": 3}
)  # '{"a": 1, "b": 2, "c": 3}'
string_dumps = JSON.dumps({"a": 1, "b": 2, "c": 3})  # '{"a": 1, "b": 2, "c": 3}'
string_dumps
```

    '{"a":1,"b":2,"c":3}'

#### JSON option kwargs ~ `pretty` & `sort_keys`

**pretty:**

```python
string_dumps = JSON.stringify(
    {"b": 2, "a": 1, "c": 3}, pretty=True
)  # '{"a": 1, "b": 2, "c": 3}'
print(string_dumps)
```

    {
      "b": 2,
      "a": 1,
      "c": 3
    }

**sort_keys:**

```python
string_dumps = JSON.stringify(
    {"b": 2, "a": 1, "c": 3}, pretty=True, sort_keys=True
)  # '{"a": 1, "b": 2, "c": 3}'
print(string_dumps)
```

    {
      "a": 1,
      "b": 2,
      "c": 3
    }

### JsonObj & JSON

- Python dictionary/object with dot access
- Protections against setting class/obj attributes
- Is as javascript-y as possible (keys have to be strings -- ints/floats will be converted to strings)
- Create a `jsonbourne.JsonObj` with `jsonbourne.JSON`
- Recursive jsonification
- Allows for kwarging (`**json_obj`)
- Works with `pydantic` and `attrs`

#### Make an empty JsonObj

The following 3 examples all produce the same thing

```python
from jsonbourne import JSON
j = JSON()  # j => JsonObj(**{})
# OR
import JSON
j = JSON()  # j => JsonObj(**{})
# OR
from jsonbourne import JsonObj
j = JsonObj()  # j => JsonObj(**{})
```

#### From a dictionary o data

```python
import datetime

data = {
    "key": "value",
    "list": [1, 2, 3, 4, 5],
    "dt": datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
    "sub": {
        "b": 3,
        "key": "val",
        "a": 1,
    },
    "timedelta": datetime.timedelta(days=2),
}

JSON(data)
```

<pre>JsonObj(**{
    'dt': datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
    'key': 'value',
    'list': [1, 2, 3, 4, 5],
    'sub': {'a': 1, 'b': 3, 'key': 'val'},
    'timedelta': datetime.timedelta(days=2)
})</pre>

### Dot access

```python
JSON(data).sub.b
```

    3

```python
stringified_data = JSON(data).stringify(pretty=True)
print(stringified_data)
```

    {
      "key": "value",
      "list": [
        1,
        2,
        3,
        4,
        5
      ],
      "dt": "1970-01-01T00:00:00.000001",
      "sub": {
        "b": 3,
        "key": "val",
        "a": 1
      },
      "timedelta": 172800.0
    }

```python
parsed_data = JSON(stringified_data)
parsed_data
```

<pre>JsonObj(**{
    'dt': '1970-01-01T00:00:00.000001',
    'key': 'value',
    'list': [1, 2, 3, 4, 5],
    'sub': {'a': 1, 'b': 3, 'key': 'val'},
    'timedelta': 172800.0
})</pre>

```python
list(parsed_data.keys())
```

    ['key', 'list', 'dt', 'sub', 'timedelta']

```python
list(parsed_data.items())
```

    [('key', 'value'),
     ('list', [1, 2, 3, 4, 5]),
     ('dt', '1970-01-01T00:00:00.000001'),
     ('sub', JsonObj(**{'b': 3, 'key': 'val', 'a': 1})),
     ('timedelta', 172800.0)]

```python
list(parsed_data.dot_keys())
```

    [('key',),
     ('list',),
     ('dt',),
     ('sub', 'b'),
     ('sub', 'key'),
     ('sub', 'a'),
     ('timedelta',)]

```python
list(parsed_data.dot_items())
```

    [(('key',), 'value'),
     (('list',), [1, 2, 3, 4, 5]),
     (('dt',), '1970-01-01T00:00:00.000001'),
     (('sub', 'b'), 3),
     (('sub', 'key'), 'val'),
     (('sub', 'a'), 1),
     (('timedelta',), 172800.0)]

```python
parsed_data[("sub", "key")]
```

    'val'

```python
parsed_data.dot_lookup("sub.key")
```

    'val'

```python
{**parsed_data}
```

    {'key': 'value',
     'list': [1, 2, 3, 4, 5],
     'dt': '1970-01-01T00:00:00.000001',
     'sub': JsonObj(**{'b': 3, 'key': 'val', 'a': 1}),
     'timedelta': 172800.0}

```python
# fully eject
parsed_data.eject()
```

    {'key': 'value',
     'list': [1, 2, 3, 4, 5],
     'dt': '1970-01-01T00:00:00.000001',
     'sub': {'b': 3, 'key': 'val', 'a': 1},
     'timedelta': 172800.0}

#### Protected keys

`jsonbourne.JsonObj` protects against setting attributes like `'items'` through dot-notation.

```python
from jsonbourne import JSON

j = JSON()
j.key = "value"
try:  # CANNOT set 'items' using dot-access
    j.items = [1, 2, 3, 4]
except ValueError:
    pass
# CAN set 'items' through key/item access
j["items"] = [1, 2, 3, 4]
print(j.__dict__)
print(j)
j_items = j.items
print("items", j_items)
# Getting 'items' through dot-access returns the `items()` method
assert j.items != [1, 2, 3, 4]
# Getting 'items' with key-access returns the stored value
assert j["items"] == [1, 2, 3, 4]
```

    {'_data': {'key': 'value', 'items': [1, 2, 3, 4]}}
    JsonObj(**{
        'items': [1, 2, 3, 4], 'key': 'value'
    })
    items <bound method JsonObj.items of JsonObj(**{'key': 'value', 'items': [1, 2, 3, 4]})>

### pydantic & jsonbourne

- `from jsonbourne.pydantic import JsonBaseModel`
- Allows for aliases when getting/setting attribute(s)
- Supports `__post_init__` (like dataclasses)

#### Basic usage:

```python
from jsonbourne import JsonObj
from jsonbourne.pydantic import JsonBaseModel


class JsonSubObj(JsonBaseModel):
    herm: int

    def to_dict(self):
        return self.dict()

    def to_json(self, *args, **kwargs):
        return self.json()

    @classmethod
    def from_json(cls, json_string: str):
        return JsonSubObj(json.loads(json_string))


class JsonObjModel(JsonBaseModel):
    a: int
    b: int
    c: str
    d: JsonObj
    e: JsonSubObj

    #
    @property
    def a_property(self) -> str:
        return "prop_value"

    def to_json(self, *args, **kwargs):
        return self.json()

    @classmethod
    def from_json(cls, json_string: str):
        return cls(**json.loads(json_string))


obj = JsonObjModel(
    **{"a": 1, "b": 2, "c": "herm", "d": {"nested": "nestedval"}, "e": {"herm": 2}}
)
obj
```

<pre>JsonObjModel(**{
     'a': 1,
     'b': 2,
     'c': 'herm',
     'd': JsonObj(**{'nested': 'nestedval'}),
     'e': {'herm': 2}
})</pre>

```python
# respects properties (which I don't think pydantic does(currently))
obj.a_property
```

    'prop_value'

---

## JSON backend/lib

**`jsonbourne` finds the best json-lib (python-rapidjson/orjson) it can!** On import `jsonbourne` gets to
work spying on your python env. `jsonbourne`, the most highly qualified json-CIA-agent, will import the best
python-json library it can find; if `jsonbourne`'s cover is blown (meaning: the
only json library found is the python stdlib json), `jsonbourne` will fallback
to
the python stdlib json.

`jsonbourne` will look for the following json-packages in the following order:

1. `rapidjson`
2. `orjson`

### Custom lib preferences

```python
from jsonbourne import import_json

json = import_json(("rapidjson", "orjson"))  # prefer rapidjson over orjson
string = json.dumps({"a": 1, "b": 2, "c": 3})
print(json)
print(string)
```

    <class 'jsonbourne.jsonlib.RAPIDJSON'>
    {"a":1,"b":2,"c":3}

### Installing better JSON lib:

#### `orjson`

- `pip install orjson` [pip]

#### `rapidjson`/`python-rapidjson`

- `pip install python-rapidjson` [pip]
- `conda install -c anaconda python-rapidjson` [conda anaconda/defaults]
- `conda install -c conda-forge python-rapidjson` [conda-forge]

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/dynamic-graphics-inc/dgpy-libs/tree/main/libs/jsonbourne",
    "name": "jsonbourne",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.8",
    "maintainer_email": null,
    "keywords": "dgpy, pydantic, json, orjson, rapidjson",
    "author": "jesse",
    "author_email": "jesse@dgi.com",
    "download_url": "https://files.pythonhosted.org/packages/8e/d3/8c9b831e49658afc055a89283a1ea714b7a55d416426c4133655a1c05ab5/jsonbourne-0.29.0.tar.gz",
    "platform": null,
    "description": "<a href=\"https://github.com/dynamic-graphics-inc/dgpy-libs\">\n<img align=\"right\" src=\"https://github.com/dynamic-graphics-inc/dgpy-libs/blob/main/docs/images/dgpy_banner.svg?raw=true\" alt=\"drawing\" height=\"120\" width=\"300\"/>\n</a>\n\n# jsonbourne\n\n[![Wheel](https://img.shields.io/pypi/wheel/jsonbourne.svg)](https://img.shields.io/pypi/wheel/jsonbourne.svg)\n[![Version](https://img.shields.io/pypi/v/jsonbourne.svg)](https://img.shields.io/pypi/v/jsonbourne.svg)\n[![py_versions](https://img.shields.io/pypi/pyversions/jsonbourne.svg)](https://img.shields.io/pypi/pyversions/jsonbourne.svg)\n[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\n\n**Install:** `pip install jsonbourne`\n\n- Python json lib/pkg that makes json feel like the JSON module in javascript/typescript:\n  - `from jsonbourne import JSON; JSON.parse(JSON.stringify({\"key\": \"value\"}))`\n  - Automatically uses best json-lib-backend available (`orjson`/`python-rapidjson`) ~ can be configured\n- Hybrid dict/class object (`jsonbourne.JsonObj`):\n  - Dot-notation getting/setting (featuring protected attributes!)\n  - All your favorite python dictionary methods (`items`, `keys`, `update`, `values`) and more!\n  - Works with `pydantic` and `attrs`\n- FastAPI:\n  - JSONBOURNEResponse ~ auto use the best\n- No hard dependencies ~ works with python-stdlib-json as well as `orjson` and `python-rapidjson`\n- `jsonbourne.JsonObj` uses list/dict comprehensions (some are recursive) everywhere because 'why not?' and it is a bit faster\n\n## Usage:\n\n### JSON ~ `from jsonbourne import JSON`\n\n**Importing:**\n\n```python\n# Importing JSON:\nfrom jsonbourne import JSON\n\n# or\nimport JSON\n\n# Importing jsonbourne:\nimport jsonbourne\nimport david_webb  # jsonbourne's `True` identity\n```\n\n**JSON basics:**\n\n```python\nimport JSON  # Module included with jsonbourne\n\nstring_stringify = JSON.stringify(\n    {\"a\": 1, \"b\": 2, \"c\": 3}\n)  # '{\"a\": 1, \"b\": 2, \"c\": 3}'\nstring_dumps = JSON.dumps({\"a\": 1, \"b\": 2, \"c\": 3})  # '{\"a\": 1, \"b\": 2, \"c\": 3}'\nstring_dumps\n```\n\n    '{\"a\":1,\"b\":2,\"c\":3}'\n\n#### JSON option kwargs ~ `pretty` & `sort_keys`\n\n**pretty:**\n\n```python\nstring_dumps = JSON.stringify(\n    {\"b\": 2, \"a\": 1, \"c\": 3}, pretty=True\n)  # '{\"a\": 1, \"b\": 2, \"c\": 3}'\nprint(string_dumps)\n```\n\n    {\n      \"b\": 2,\n      \"a\": 1,\n      \"c\": 3\n    }\n\n**sort_keys:**\n\n```python\nstring_dumps = JSON.stringify(\n    {\"b\": 2, \"a\": 1, \"c\": 3}, pretty=True, sort_keys=True\n)  # '{\"a\": 1, \"b\": 2, \"c\": 3}'\nprint(string_dumps)\n```\n\n    {\n      \"a\": 1,\n      \"b\": 2,\n      \"c\": 3\n    }\n\n### JsonObj & JSON\n\n- Python dictionary/object with dot access\n- Protections against setting class/obj attributes\n- Is as javascript-y as possible (keys have to be strings -- ints/floats will be converted to strings)\n- Create a `jsonbourne.JsonObj` with `jsonbourne.JSON`\n- Recursive jsonification\n- Allows for kwarging (`**json_obj`)\n- Works with `pydantic` and `attrs`\n\n#### Make an empty JsonObj\n\nThe following 3 examples all produce the same thing\n\n```python\nfrom jsonbourne import JSON\nj = JSON()  # j => JsonObj(**{})\n# OR\nimport JSON\nj = JSON()  # j => JsonObj(**{})\n# OR\nfrom jsonbourne import JsonObj\nj = JsonObj()  # j => JsonObj(**{})\n```\n\n#### From a dictionary o data\n\n```python\nimport datetime\n\ndata = {\n    \"key\": \"value\",\n    \"list\": [1, 2, 3, 4, 5],\n    \"dt\": datetime.datetime(1970, 1, 1, 0, 0, 0, 1),\n    \"sub\": {\n        \"b\": 3,\n        \"key\": \"val\",\n        \"a\": 1,\n    },\n    \"timedelta\": datetime.timedelta(days=2),\n}\n\nJSON(data)\n```\n\n<pre>JsonObj(**{\n    'dt': datetime.datetime(1970, 1, 1, 0, 0, 0, 1),\n    'key': 'value',\n    'list': [1, 2, 3, 4, 5],\n    'sub': {'a': 1, 'b': 3, 'key': 'val'},\n    'timedelta': datetime.timedelta(days=2)\n})</pre>\n\n### Dot access\n\n```python\nJSON(data).sub.b\n```\n\n    3\n\n```python\nstringified_data = JSON(data).stringify(pretty=True)\nprint(stringified_data)\n```\n\n    {\n      \"key\": \"value\",\n      \"list\": [\n        1,\n        2,\n        3,\n        4,\n        5\n      ],\n      \"dt\": \"1970-01-01T00:00:00.000001\",\n      \"sub\": {\n        \"b\": 3,\n        \"key\": \"val\",\n        \"a\": 1\n      },\n      \"timedelta\": 172800.0\n    }\n\n```python\nparsed_data = JSON(stringified_data)\nparsed_data\n```\n\n<pre>JsonObj(**{\n    'dt': '1970-01-01T00:00:00.000001',\n    'key': 'value',\n    'list': [1, 2, 3, 4, 5],\n    'sub': {'a': 1, 'b': 3, 'key': 'val'},\n    'timedelta': 172800.0\n})</pre>\n\n```python\nlist(parsed_data.keys())\n```\n\n    ['key', 'list', 'dt', 'sub', 'timedelta']\n\n```python\nlist(parsed_data.items())\n```\n\n    [('key', 'value'),\n     ('list', [1, 2, 3, 4, 5]),\n     ('dt', '1970-01-01T00:00:00.000001'),\n     ('sub', JsonObj(**{'b': 3, 'key': 'val', 'a': 1})),\n     ('timedelta', 172800.0)]\n\n```python\nlist(parsed_data.dot_keys())\n```\n\n    [('key',),\n     ('list',),\n     ('dt',),\n     ('sub', 'b'),\n     ('sub', 'key'),\n     ('sub', 'a'),\n     ('timedelta',)]\n\n```python\nlist(parsed_data.dot_items())\n```\n\n    [(('key',), 'value'),\n     (('list',), [1, 2, 3, 4, 5]),\n     (('dt',), '1970-01-01T00:00:00.000001'),\n     (('sub', 'b'), 3),\n     (('sub', 'key'), 'val'),\n     (('sub', 'a'), 1),\n     (('timedelta',), 172800.0)]\n\n```python\nparsed_data[(\"sub\", \"key\")]\n```\n\n    'val'\n\n```python\nparsed_data.dot_lookup(\"sub.key\")\n```\n\n    'val'\n\n```python\n{**parsed_data}\n```\n\n    {'key': 'value',\n     'list': [1, 2, 3, 4, 5],\n     'dt': '1970-01-01T00:00:00.000001',\n     'sub': JsonObj(**{'b': 3, 'key': 'val', 'a': 1}),\n     'timedelta': 172800.0}\n\n```python\n# fully eject\nparsed_data.eject()\n```\n\n    {'key': 'value',\n     'list': [1, 2, 3, 4, 5],\n     'dt': '1970-01-01T00:00:00.000001',\n     'sub': {'b': 3, 'key': 'val', 'a': 1},\n     'timedelta': 172800.0}\n\n#### Protected keys\n\n`jsonbourne.JsonObj` protects against setting attributes like `'items'` through dot-notation.\n\n```python\nfrom jsonbourne import JSON\n\nj = JSON()\nj.key = \"value\"\ntry:  # CANNOT set 'items' using dot-access\n    j.items = [1, 2, 3, 4]\nexcept ValueError:\n    pass\n# CAN set 'items' through key/item access\nj[\"items\"] = [1, 2, 3, 4]\nprint(j.__dict__)\nprint(j)\nj_items = j.items\nprint(\"items\", j_items)\n# Getting 'items' through dot-access returns the `items()` method\nassert j.items != [1, 2, 3, 4]\n# Getting 'items' with key-access returns the stored value\nassert j[\"items\"] == [1, 2, 3, 4]\n```\n\n    {'_data': {'key': 'value', 'items': [1, 2, 3, 4]}}\n    JsonObj(**{\n        'items': [1, 2, 3, 4], 'key': 'value'\n    })\n    items <bound method JsonObj.items of JsonObj(**{'key': 'value', 'items': [1, 2, 3, 4]})>\n\n### pydantic & jsonbourne\n\n- `from jsonbourne.pydantic import JsonBaseModel`\n- Allows for aliases when getting/setting attribute(s)\n- Supports `__post_init__` (like dataclasses)\n\n#### Basic usage:\n\n```python\nfrom jsonbourne import JsonObj\nfrom jsonbourne.pydantic import JsonBaseModel\n\n\nclass JsonSubObj(JsonBaseModel):\n    herm: int\n\n    def to_dict(self):\n        return self.dict()\n\n    def to_json(self, *args, **kwargs):\n        return self.json()\n\n    @classmethod\n    def from_json(cls, json_string: str):\n        return JsonSubObj(json.loads(json_string))\n\n\nclass JsonObjModel(JsonBaseModel):\n    a: int\n    b: int\n    c: str\n    d: JsonObj\n    e: JsonSubObj\n\n    #\n    @property\n    def a_property(self) -> str:\n        return \"prop_value\"\n\n    def to_json(self, *args, **kwargs):\n        return self.json()\n\n    @classmethod\n    def from_json(cls, json_string: str):\n        return cls(**json.loads(json_string))\n\n\nobj = JsonObjModel(\n    **{\"a\": 1, \"b\": 2, \"c\": \"herm\", \"d\": {\"nested\": \"nestedval\"}, \"e\": {\"herm\": 2}}\n)\nobj\n```\n\n<pre>JsonObjModel(**{\n     'a': 1,\n     'b': 2,\n     'c': 'herm',\n     'd': JsonObj(**{'nested': 'nestedval'}),\n     'e': {'herm': 2}\n})</pre>\n\n```python\n# respects properties (which I don't think pydantic does(currently))\nobj.a_property\n```\n\n    'prop_value'\n\n---\n\n## JSON backend/lib\n\n**`jsonbourne` finds the best json-lib (python-rapidjson/orjson) it can!** On import `jsonbourne` gets to\nwork spying on your python env. `jsonbourne`, the most highly qualified json-CIA-agent, will import the best\npython-json library it can find; if `jsonbourne`'s cover is blown (meaning: the\nonly json library found is the python stdlib json), `jsonbourne` will fallback\nto\nthe python stdlib json.\n\n`jsonbourne` will look for the following json-packages in the following order:\n\n1. `rapidjson`\n2. `orjson`\n\n### Custom lib preferences\n\n```python\nfrom jsonbourne import import_json\n\njson = import_json((\"rapidjson\", \"orjson\"))  # prefer rapidjson over orjson\nstring = json.dumps({\"a\": 1, \"b\": 2, \"c\": 3})\nprint(json)\nprint(string)\n```\n\n    <class 'jsonbourne.jsonlib.RAPIDJSON'>\n    {\"a\":1,\"b\":2,\"c\":3}\n\n### Installing better JSON lib:\n\n#### `orjson`\n\n- `pip install orjson` [pip]\n\n#### `rapidjson`/`python-rapidjson`\n\n- `pip install python-rapidjson` [pip]\n- `conda install -c anaconda python-rapidjson` [conda anaconda/defaults]\n- `conda install -c conda-forge python-rapidjson` [conda-forge]\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "EZPZ JSON",
    "version": "0.29.0",
    "project_urls": {
        "Homepage": "https://github.com/dynamic-graphics-inc/dgpy-libs/tree/main/libs/jsonbourne",
        "Repository": "https://github.com/dynamic-graphics-inc/dgpy-libs"
    },
    "split_keywords": [
        "dgpy",
        " pydantic",
        " json",
        " orjson",
        " rapidjson"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "851f5f7b865b84e902c7cd081e6a8d68723d7108df019c57af84fe4c02f73790",
                "md5": "8a6094fa861ab7f34cee89e915d436e7",
                "sha256": "3571563f838a214dcbe680d54fc06c9fb841f82a648b615576e13d8855ae2dd0"
            },
            "downloads": -1,
            "filename": "jsonbourne-0.29.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8a6094fa861ab7f34cee89e915d436e7",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.8",
            "size": 27472,
            "upload_time": "2024-05-01T17:30:30",
            "upload_time_iso_8601": "2024-05-01T17:30:30.335398Z",
            "url": "https://files.pythonhosted.org/packages/85/1f/5f7b865b84e902c7cd081e6a8d68723d7108df019c57af84fe4c02f73790/jsonbourne-0.29.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8ed38c9b831e49658afc055a89283a1ea714b7a55d416426c4133655a1c05ab5",
                "md5": "47c447918e1d8363e06318a7706ce669",
                "sha256": "8d2efb1d44eec3796484243592a76f6e4c15208311da39de1fc4937faba5ea79"
            },
            "downloads": -1,
            "filename": "jsonbourne-0.29.0.tar.gz",
            "has_sig": false,
            "md5_digest": "47c447918e1d8363e06318a7706ce669",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.8",
            "size": 25798,
            "upload_time": "2024-05-01T17:30:32",
            "upload_time_iso_8601": "2024-05-01T17:30:32.555464Z",
            "url": "https://files.pythonhosted.org/packages/8e/d3/8c9b831e49658afc055a89283a1ea714b7a55d416426c4133655a1c05ab5/jsonbourne-0.29.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-05-01 17:30:32",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "dynamic-graphics-inc",
    "github_project": "dgpy-libs",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "jsonbourne"
}
        
Elapsed time: 0.47644s