jtd-to-proto


Namejtd-to-proto JSON
Version 0.13.0 PyPI version JSON
download
home_pagehttps://github.com/IBM/py-to-proto
SummaryDEPRECATED: Please see py-to-proto: https://pypi.org/project/py-to-proto/
upload_time2023-04-26 22:36:13
maintainer
docs_urlNone
authorGabe Goodhart
requires_python
licenseMIT
keywords json json typedef jtd protobuf proto dataclass
VCS
bugtrack_url
requirements protobuf alchemy-logging typing-extensions
Travis-CI No Travis.
coveralls test coverage
            
# DEPRECATED

This project has been renamed to `py-to-proto` to reflect its expansion to include other input schema formats. Please see https://pypi.org/project/py-to-proto/

# PY To Proto

This library holds utilities for converting in-memory data schema representations to [Protobuf](https://developers.google.com/protocol-buffers). The intent is to allow python libraries to leverage the power of `protobuf` while maintaining the source-of-truth for their data in pure python and avoiding static build steps.

## Why?

The `protobuf` langauge is a powerful tool for defining language-agnostic, composable datastructures. `Protobuf` also offers cross-language compatibility so that a given set of definitions can be compiled into numerous target programming languages. The downside is that `protobuf` requires_a static built step to perform this `proto` -> `X` conversion step. Alternately, there are multiple ways of representing data schemas in pure python which allow a python library to interact with well-typed data objects. The downside here is that these structures can not easily be used from other programming languages. The pros/cons of these generally fall along the following lines:

-   `Protobuf`:
    -   **Advantages**
        -   Compact serialization
        -   Auto-generated [`grpc`](https://grpc.io/) client and service libraries
        -   Client libraries can be used from different programming languages
    -   **Disadvantages**
        -   Learning curve to understand the full ecosystem
        -   Not a familiar tool outside of service engineering
        -   Static compilation step required to use in code
-   Python schemas:
    -   **Advantages**
        -   Can be learned quickly using pure-python documentation
        -   Can be written inline in pure python
    -   **Disadvantages**
        -   Generally, no standard serialization beyond `json`
        -   No automated service implementations
        -   No/manual mechanism for usage in other programming languages

This project aims to bring the advantages of both types of schema representation so that a given project can take advantage of the best of both:

-   Define your structures in pure python for simplicity
-   Dynamically create [`google.protobuf.Descriptor`](https://github.com/protocolbuffers/protobuf/blob/main/python/google/protobuf/descriptor.py#L245) objects to allow for `protobuf` serialization and deserialization
-   Reverse render a `.proto` file from the generated `Descriptor` so that stubs can be generated in other languages
-   No static compiliation needed!

## Supported Python Schema Types

Currently, objects can be declared using either [python `dataclasses`](https://docs.python.org/3/library/dataclasses.html) or [Json TypeDef (JTD)](https://jsontypedef.com/). Additional schemas can be added by [subclassing `ConverterBase`](py_to_proto/converter_base.py).

### Dataclass To Proto

The following example illustrates how `dataclasses` and `enums` can be converted to proto:

```py
from dataclasses import dataclass
from enum import Enum
from typing import Annotated, Dict, List, Enum
import py_to_proto

# Define the Foo structure as a python dataclass, including a nested enum
@dataclass
class Foo:

    class BarEnum(Enum):
        EXAM: 0
        JOKE_SETTING: 1

    foo: bool
    bar: List[BarEnum]

# Define the Foo protobuf message class
FooProto = py_to_proto.descriptor_to_message_class(
    py_to_proto.dataclass_to_proto(
        package="foobar",
        dataclass_=Foo,
    )
)

# Declare the Bar structure as a python dataclass with a reference to the
# FooProto type
@dataclass
class Bar:
    baz: FooProto

# Define the Bar protobuf message class
BarProto = py_to_proto.descriptor_to_message_class(
    py_to_proto.dataclass_to_proto(
        package="foobar",
        dataclass_=Bar,
    )
)

# Instantiate a BarProto
print(BarProto(baz=FooProto(foo=True, bar=[Foo.BarEnum.EXAM.value])))

def write_protos(proto_dir: str):
    """Write out the .proto files for FooProto and BarProto to the given
    directory
    """
    FooProto.write_proto_file(proto_dir)
    BarProto.write_proto_file(proto_dir)
```

### JTD To Proto

The following example illustrates how JTD schemas can be converted to proto:

```py
import py_to_proto

# Declare the Foo protobuf message class
Foo = py_to_proto.descriptor_to_message_class(
    py_to_proto.jtd_to_proto(
        name="Foo",
        package="foobar",
        jtd_def={
            "properties": {
                # Bool field
                "foo": {
                    "type": "boolean",
                },
                # Array of nested enum values
                "bar": {
                    "elements": {
                        "enum": ["EXAM", "JOKE_SETTING"],
                    }
                }
            }
        },
    )
)

# Declare an object that references Foo as the type for a field
Bar = py_to_proto.descriptor_to_message_class(
    py_to_proto.jtd_to_proto(
        name="Bar",
        package="foobar",
        jtd_def={
            "properties": {
                "baz": {
                    "type": Foo.DESCRIPTOR,
                },
            },
        },
    ),
)

def write_protos(proto_dir: str):
    """Write out the .proto files for Foo and Bar to the given directory"""
    Foo.write_proto_file(proto_dir)
    Bar.write_proto_file(proto_dir)
```

## Similar Projects

There are a number of similar projects in this space that offer slightly different value:

-   [`jtd-codegen`](https://jsontypedef.com/docs/jtd-codegen/): This project focuses on statically generating language-native code (including `python`) to represent the JTD schema.
-   [`py-json-to-proto`](https://pypi.org/project/py-json-to-proto/): This project aims to deduce a schema from an instance of a `json` object.
-   [`pure-protobuf`](https://pypi.org/project/pure-protobuf/): This project has a very similar aim to `py-to-proto`, but it skips the intermediate `descriptor` representation and thus is not able to produce native `message.Message` classes.



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/IBM/py-to-proto",
    "name": "jtd-to-proto",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "json,json typedef,jtd,protobuf,proto,dataclass",
    "author": "Gabe Goodhart",
    "author_email": "gabe.l.hart@gmail.com",
    "download_url": "",
    "platform": null,
    "description": "\n# DEPRECATED\n\nThis project has been renamed to `py-to-proto` to reflect its expansion to include other input schema formats. Please see https://pypi.org/project/py-to-proto/\n\n# PY To Proto\n\nThis library holds utilities for converting in-memory data schema representations to [Protobuf](https://developers.google.com/protocol-buffers). The intent is to allow python libraries to leverage the power of `protobuf` while maintaining the source-of-truth for their data in pure python and avoiding static build steps.\n\n## Why?\n\nThe `protobuf` langauge is a powerful tool for defining language-agnostic, composable datastructures. `Protobuf` also offers cross-language compatibility so that a given set of definitions can be compiled into numerous target programming languages. The downside is that `protobuf` requires_a static built step to perform this `proto` -> `X` conversion step. Alternately, there are multiple ways of representing data schemas in pure python which allow a python library to interact with well-typed data objects. The downside here is that these structures can not easily be used from other programming languages. The pros/cons of these generally fall along the following lines:\n\n-   `Protobuf`:\n    -   **Advantages**\n        -   Compact serialization\n        -   Auto-generated [`grpc`](https://grpc.io/) client and service libraries\n        -   Client libraries can be used from different programming languages\n    -   **Disadvantages**\n        -   Learning curve to understand the full ecosystem\n        -   Not a familiar tool outside of service engineering\n        -   Static compilation step required to use in code\n-   Python schemas:\n    -   **Advantages**\n        -   Can be learned quickly using pure-python documentation\n        -   Can be written inline in pure python\n    -   **Disadvantages**\n        -   Generally, no standard serialization beyond `json`\n        -   No automated service implementations\n        -   No/manual mechanism for usage in other programming languages\n\nThis project aims to bring the advantages of both types of schema representation so that a given project can take advantage of the best of both:\n\n-   Define your structures in pure python for simplicity\n-   Dynamically create [`google.protobuf.Descriptor`](https://github.com/protocolbuffers/protobuf/blob/main/python/google/protobuf/descriptor.py#L245) objects to allow for `protobuf` serialization and deserialization\n-   Reverse render a `.proto` file from the generated `Descriptor` so that stubs can be generated in other languages\n-   No static compiliation needed!\n\n## Supported Python Schema Types\n\nCurrently, objects can be declared using either [python `dataclasses`](https://docs.python.org/3/library/dataclasses.html) or [Json TypeDef (JTD)](https://jsontypedef.com/). Additional schemas can be added by [subclassing `ConverterBase`](py_to_proto/converter_base.py).\n\n### Dataclass To Proto\n\nThe following example illustrates how `dataclasses` and `enums` can be converted to proto:\n\n```py\nfrom dataclasses import dataclass\nfrom enum import Enum\nfrom typing import Annotated, Dict, List, Enum\nimport py_to_proto\n\n# Define the Foo structure as a python dataclass, including a nested enum\n@dataclass\nclass Foo:\n\n    class BarEnum(Enum):\n        EXAM: 0\n        JOKE_SETTING: 1\n\n    foo: bool\n    bar: List[BarEnum]\n\n# Define the Foo protobuf message class\nFooProto = py_to_proto.descriptor_to_message_class(\n    py_to_proto.dataclass_to_proto(\n        package=\"foobar\",\n        dataclass_=Foo,\n    )\n)\n\n# Declare the Bar structure as a python dataclass with a reference to the\n# FooProto type\n@dataclass\nclass Bar:\n    baz: FooProto\n\n# Define the Bar protobuf message class\nBarProto = py_to_proto.descriptor_to_message_class(\n    py_to_proto.dataclass_to_proto(\n        package=\"foobar\",\n        dataclass_=Bar,\n    )\n)\n\n# Instantiate a BarProto\nprint(BarProto(baz=FooProto(foo=True, bar=[Foo.BarEnum.EXAM.value])))\n\ndef write_protos(proto_dir: str):\n    \"\"\"Write out the .proto files for FooProto and BarProto to the given\n    directory\n    \"\"\"\n    FooProto.write_proto_file(proto_dir)\n    BarProto.write_proto_file(proto_dir)\n```\n\n### JTD To Proto\n\nThe following example illustrates how JTD schemas can be converted to proto:\n\n```py\nimport py_to_proto\n\n# Declare the Foo protobuf message class\nFoo = py_to_proto.descriptor_to_message_class(\n    py_to_proto.jtd_to_proto(\n        name=\"Foo\",\n        package=\"foobar\",\n        jtd_def={\n            \"properties\": {\n                # Bool field\n                \"foo\": {\n                    \"type\": \"boolean\",\n                },\n                # Array of nested enum values\n                \"bar\": {\n                    \"elements\": {\n                        \"enum\": [\"EXAM\", \"JOKE_SETTING\"],\n                    }\n                }\n            }\n        },\n    )\n)\n\n# Declare an object that references Foo as the type for a field\nBar = py_to_proto.descriptor_to_message_class(\n    py_to_proto.jtd_to_proto(\n        name=\"Bar\",\n        package=\"foobar\",\n        jtd_def={\n            \"properties\": {\n                \"baz\": {\n                    \"type\": Foo.DESCRIPTOR,\n                },\n            },\n        },\n    ),\n)\n\ndef write_protos(proto_dir: str):\n    \"\"\"Write out the .proto files for Foo and Bar to the given directory\"\"\"\n    Foo.write_proto_file(proto_dir)\n    Bar.write_proto_file(proto_dir)\n```\n\n## Similar Projects\n\nThere are a number of similar projects in this space that offer slightly different value:\n\n-   [`jtd-codegen`](https://jsontypedef.com/docs/jtd-codegen/): This project focuses on statically generating language-native code (including `python`) to represent the JTD schema.\n-   [`py-json-to-proto`](https://pypi.org/project/py-json-to-proto/): This project aims to deduce a schema from an instance of a `json` object.\n-   [`pure-protobuf`](https://pypi.org/project/pure-protobuf/): This project has a very similar aim to `py-to-proto`, but it skips the intermediate `descriptor` representation and thus is not able to produce native `message.Message` classes.\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "DEPRECATED: Please see py-to-proto: https://pypi.org/project/py-to-proto/",
    "version": "0.13.0",
    "split_keywords": [
        "json",
        "json typedef",
        "jtd",
        "protobuf",
        "proto",
        "dataclass"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ad2cb59eb40d43bf902084c9fcf1434b5951e5d86599438fd57e028ba05ccd92",
                "md5": "642d0b69f87b8bbeec51eaf9417fc781",
                "sha256": "42461ff004ee869e4261a3fc42a77b8510b73fd456b0eb069eacd36e057ae3d7"
            },
            "downloads": -1,
            "filename": "jtd_to_proto-0.13.0-py39-none-any.whl",
            "has_sig": false,
            "md5_digest": "642d0b69f87b8bbeec51eaf9417fc781",
            "packagetype": "bdist_wheel",
            "python_version": "py39",
            "requires_python": null,
            "size": 31454,
            "upload_time": "2023-04-26T22:36:13",
            "upload_time_iso_8601": "2023-04-26T22:36:13.133755Z",
            "url": "https://files.pythonhosted.org/packages/ad/2c/b59eb40d43bf902084c9fcf1434b5951e5d86599438fd57e028ba05ccd92/jtd_to_proto-0.13.0-py39-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-04-26 22:36:13",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "IBM",
    "github_project": "py-to-proto",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": true,
    "requirements": [
        {
            "name": "protobuf",
            "specs": [
                [
                    "<",
                    "5"
                ],
                [
                    ">=",
                    "3.19.0"
                ]
            ]
        },
        {
            "name": "alchemy-logging",
            "specs": [
                [
                    ">=",
                    "1.0.3"
                ]
            ]
        },
        {
            "name": "typing-extensions",
            "specs": [
                [
                    "<",
                    "5"
                ],
                [
                    ">=",
                    "4.5.0"
                ]
            ]
        }
    ],
    "lcname": "jtd-to-proto"
}
        
Elapsed time: 0.08778s