jua


Namejua JSON
Version 0.8.3 PyPI version JSON
download
home_pageNone
SummaryEasy access to Jua's weather & power services
upload_time2025-07-14 07:22:37
maintainerNone
docs_urlNone
authorNone
requires_python>=3.11
licenseNone
keywords energy energy trading forecast hindcast power trading weather weather forecast
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Jua Python SDK

**Access industry-leading weather forecasts with ease**

The Jua Python SDK provides a simple and powerful interface to Jua's state-of-the-art weather forecasting capabilities. Easily integrate accurate weather data into your applications, research, or analysis workflows.

## Getting Started 🚀

### Prerequisites

- Python 3.11 or higher
- Internet connection for API access

### Installation

Install `jua` with pip:

```
pip install jua
```

Alternatively, checkout [uv](https://docs.astral.sh/uv/) for managing dependencies and Python versions:

```bash
uv init && uv add jua
```

### Authentication

Generate an API key from the [Jua dashboard](https://app.jua.ai/api-keys) and save it to `~/.jua/default/api-key.json`.

_Coming soon: Simply run `jua auth` to authenticate via your web browser._

## Examples

### Access the latest 20-day forecast for a point location

Retrieve temperature forecasts for Zurich and visualize the data:

```python
import matplotlib.pyplot as plt
from jua import JuaClient
from jua.types.geo import LatLon
from jua.weather import Models, Variables

client = JuaClient()
model = client.weather.get_model(Models.EPT1_5)
zurich = LatLon(lat=47.3769, lon=8.5417)
# Get latest forecast
forecast = model.forecast.get_forecast(
    points=[zurich]
)
temp_data = forecast[Variables.AIR_TEMPERATURE_AT_HEIGHT_LEVEL_2M]
temp_data.to_celcius().to_absolute_time().plot()
plt.show()
```

<details>
<summary>Show output</summary>

![Forecast Zurich 20d](content/readme/forecast_zurich.png)

</details>

### Plot global forecast with 10-hour lead time

Generate a global wind speed visualization:

```python
import matplotlib.pyplot as plt
from jua import JuaClient
from jua.weather import Models, Variables

client = JuaClient()
model = client.weather.get_model(Models.EPT1_5)

lead_time = 10 # hours
dataset = model.forecast.get_forecast(
    prediction_timedelta=lead_time,
    variables=[
        Variables.WIND_SPEED_AT_HEIGHT_LEVEL_10M,
    ],
)
dataset[Variables.WIND_SPEED_AT_HEIGHT_LEVEL_10M].plot()
plt.show()
```

<details>
<summary>Show output</summary>

![Global Windspeed 10h](content/readme/global_windspeed_10h.png)

</details>

### Access historical weather data

Retrieve and visualize temperature data for Europe from a specific date:

```python
import matplotlib.pyplot as plt
from jua import JuaClient
from jua.weather import Models, Variables

client = JuaClient()
model = client.weather.get_model(Models.EPT1_5_EARLY)

init_time = "2024-02-01 06:00:00"
hindcast = model.hindcast.get_hindcast(
    variables=[Variables.AIR_TEMPERATURE_AT_HEIGHT_LEVEL_2M],
    init_time=init_time,
    prediction_timedelta=0,
    # Select Europe
    latitude=slice(71, 36),
    longitude=slice(-15, 50),
    method="nearest",
)

data = hindcast[Variables.AIR_TEMPERATURE_AT_HEIGHT_LEVEL_2M]
data.plot()
plt.show()
```

<details>
<summary>Show output</summary>

![Europe Hindcast](content/readme/hindcast_europe.png)

</details>

## Documentation

For comprehensive documentation, visit [docs.jua.ai](https://docs.jua.ai).

## Contributing

See the [contribution guide](./CONTRIBUTING.md) to get started.

## Changes

See the [changelog](./CHANGELOG.md) for the latest changes.

## Support

If you encounter any issues or have questions, please:

- Check the [documentation](https://docs.jua.ai)
- Open an issue on GitHub
- Contact support@jua.ai

## License

This project is licensed under the MIT License - see the LICENSE file for details.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "jua",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.11",
    "maintainer_email": null,
    "keywords": "energy, energy trading, forecast, hindcast, power, trading, weather, weather forecast",
    "author": null,
    "author_email": "\"Jua.ai AG\" <contact@jua.ai>",
    "download_url": "https://files.pythonhosted.org/packages/91/a0/6f281306d95e1b545c0c20a18dbbd595069f7f7dc70a509ca429ff748ba4/jua-0.8.3.tar.gz",
    "platform": null,
    "description": "# Jua Python SDK\n\n**Access industry-leading weather forecasts with ease**\n\nThe Jua Python SDK provides a simple and powerful interface to Jua's state-of-the-art weather forecasting capabilities. Easily integrate accurate weather data into your applications, research, or analysis workflows.\n\n## Getting Started \ud83d\ude80\n\n### Prerequisites\n\n- Python 3.11 or higher\n- Internet connection for API access\n\n### Installation\n\nInstall `jua` with pip:\n\n```\npip install jua\n```\n\nAlternatively, checkout [uv](https://docs.astral.sh/uv/) for managing dependencies and Python versions:\n\n```bash\nuv init && uv add jua\n```\n\n### Authentication\n\nGenerate an API key from the [Jua dashboard](https://app.jua.ai/api-keys) and save it to `~/.jua/default/api-key.json`.\n\n_Coming soon: Simply run `jua auth` to authenticate via your web browser._\n\n## Examples\n\n### Access the latest 20-day forecast for a point location\n\nRetrieve temperature forecasts for Zurich and visualize the data:\n\n```python\nimport matplotlib.pyplot as plt\nfrom jua import JuaClient\nfrom jua.types.geo import LatLon\nfrom jua.weather import Models, Variables\n\nclient = JuaClient()\nmodel = client.weather.get_model(Models.EPT1_5)\nzurich = LatLon(lat=47.3769, lon=8.5417)\n# Get latest forecast\nforecast = model.forecast.get_forecast(\n    points=[zurich]\n)\ntemp_data = forecast[Variables.AIR_TEMPERATURE_AT_HEIGHT_LEVEL_2M]\ntemp_data.to_celcius().to_absolute_time().plot()\nplt.show()\n```\n\n<details>\n<summary>Show output</summary>\n\n![Forecast Zurich 20d](content/readme/forecast_zurich.png)\n\n</details>\n\n### Plot global forecast with 10-hour lead time\n\nGenerate a global wind speed visualization:\n\n```python\nimport matplotlib.pyplot as plt\nfrom jua import JuaClient\nfrom jua.weather import Models, Variables\n\nclient = JuaClient()\nmodel = client.weather.get_model(Models.EPT1_5)\n\nlead_time = 10 # hours\ndataset = model.forecast.get_forecast(\n    prediction_timedelta=lead_time,\n    variables=[\n        Variables.WIND_SPEED_AT_HEIGHT_LEVEL_10M,\n    ],\n)\ndataset[Variables.WIND_SPEED_AT_HEIGHT_LEVEL_10M].plot()\nplt.show()\n```\n\n<details>\n<summary>Show output</summary>\n\n![Global Windspeed 10h](content/readme/global_windspeed_10h.png)\n\n</details>\n\n### Access historical weather data\n\nRetrieve and visualize temperature data for Europe from a specific date:\n\n```python\nimport matplotlib.pyplot as plt\nfrom jua import JuaClient\nfrom jua.weather import Models, Variables\n\nclient = JuaClient()\nmodel = client.weather.get_model(Models.EPT1_5_EARLY)\n\ninit_time = \"2024-02-01 06:00:00\"\nhindcast = model.hindcast.get_hindcast(\n    variables=[Variables.AIR_TEMPERATURE_AT_HEIGHT_LEVEL_2M],\n    init_time=init_time,\n    prediction_timedelta=0,\n    # Select Europe\n    latitude=slice(71, 36),\n    longitude=slice(-15, 50),\n    method=\"nearest\",\n)\n\ndata = hindcast[Variables.AIR_TEMPERATURE_AT_HEIGHT_LEVEL_2M]\ndata.plot()\nplt.show()\n```\n\n<details>\n<summary>Show output</summary>\n\n![Europe Hindcast](content/readme/hindcast_europe.png)\n\n</details>\n\n## Documentation\n\nFor comprehensive documentation, visit [docs.jua.ai](https://docs.jua.ai).\n\n## Contributing\n\nSee the [contribution guide](./CONTRIBUTING.md) to get started.\n\n## Changes\n\nSee the [changelog](./CHANGELOG.md) for the latest changes.\n\n## Support\n\nIf you encounter any issues or have questions, please:\n\n- Check the [documentation](https://docs.jua.ai)\n- Open an issue on GitHub\n- Contact support@jua.ai\n\n## License\n\nThis project is licensed under the MIT License - see the LICENSE file for details.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Easy access to Jua's weather & power services",
    "version": "0.8.3",
    "project_urls": {
        "Documentation": "https://docs.jua.ai",
        "Source": "https://github.com/juaAI/jua-python-sdk"
    },
    "split_keywords": [
        "energy",
        " energy trading",
        " forecast",
        " hindcast",
        " power",
        " trading",
        " weather",
        " weather forecast"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "1bd552559fa2d8b2aa09c49349d76f919ffa197e86f2621dba16ea636d766329",
                "md5": "c8ac76eba8c79d5fc002ecdbf2a89e37",
                "sha256": "a9e386033c205cc7dc756c4377ce4517db6922050bd9c750cf18b54b2f9e9e43"
            },
            "downloads": -1,
            "filename": "jua-0.8.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c8ac76eba8c79d5fc002ecdbf2a89e37",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.11",
            "size": 51919,
            "upload_time": "2025-07-14T07:22:36",
            "upload_time_iso_8601": "2025-07-14T07:22:36.160370Z",
            "url": "https://files.pythonhosted.org/packages/1b/d5/52559fa2d8b2aa09c49349d76f919ffa197e86f2621dba16ea636d766329/jua-0.8.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "91a06f281306d95e1b545c0c20a18dbbd595069f7f7dc70a509ca429ff748ba4",
                "md5": "96819eb0cc90c0061f8887a8bc3ff09b",
                "sha256": "adb575167d896cdab0341e17c227874efff0fdfb0f0574c3507846be7b1f67e0"
            },
            "downloads": -1,
            "filename": "jua-0.8.3.tar.gz",
            "has_sig": false,
            "md5_digest": "96819eb0cc90c0061f8887a8bc3ff09b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.11",
            "size": 1426159,
            "upload_time": "2025-07-14T07:22:37",
            "upload_time_iso_8601": "2025-07-14T07:22:37.517131Z",
            "url": "https://files.pythonhosted.org/packages/91/a0/6f281306d95e1b545c0c20a18dbbd595069f7f7dc70a509ca429ff748ba4/jua-0.8.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-14 07:22:37",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "juaAI",
    "github_project": "jua-python-sdk",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "jua"
}
        
Elapsed time: 1.32082s