# JupySQL



[](https://badge.fury.io/py/jupysql)
[](https://twitter.com/intent/user?screen_name=ploomber)
[](https://github.com/psf/black)
[](https://pepy.tech/project/jupysql)
<p align="center">
<a href="https://ploomber.io/community">Join our community</a>
|
<a href="https://share.hsforms.com/1E7Qa_OpcRPi_MV-segFsaAe6c2g">Newsletter</a>
|
<a href="mailto:contact@ploomber.io">Contact us</a>
|
<a href="https://jupysql.ploomber.io/">Docs</a>
|
<a href="https://ploomber.io/blog">Blog</a>
|
<a href="https://ploomber.io">Website</a>
|
<a href="https://www.youtube.com/channel/UCaIS5BMlmeNQE4-Gn0xTDXQ">YouTube</a>
</p>
> [!TIP]
> Deploy Streamlit and Dash apps for free on [Ploomber Cloud!](https://www.platform.ploomber.io/register/?utm_medium=github&utm_source=jupysql)
Run SQL in Jupyter/IPython via a `%sql` and `%%sql` magics.
## Features
- [Pandas integration](https://jupysql.ploomber.io/en/latest/integrations/pandas.html)
- [SQL composition (no more hard-to-debug CTEs!)](https://jupysql.ploomber.io/en/latest/compose.html)
- [Plot massive datasets without blowing up memory](https://jupysql.ploomber.io/en/latest/plot.html)
- [DuckDB integration](https://jupysql.ploomber.io/en/latest/integrations/duckdb.html)
## Installation
```
pip install jupysql
```
or:
```
conda install jupysql -c conda-forge
```
## Documentation
[Click here to see the documentation.](https://jupysql.ploomber.io)
## Credits
This project is a fork of [ipython-sql](https://github.com/catherinedevlin/ipython-sql); the objective is to turn this project into a full-featured SQL client for Jupyter. We're looking for feedback and taking feature requests, so please [join our community](https://ploomber.io/community) and enter the #jupysql channel.
Raw data
{
"_id": null,
"home_page": "https://github.com/ploomber/jupysql",
"name": "jupysql",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "database ipython postgresql mysql duckdb",
"author": "Ploomber",
"author_email": "contact@ploomber.io",
"download_url": "https://files.pythonhosted.org/packages/8d/d3/cbcf345839ba992e3c8bb0c41237b445f5eae0a814f0fcbc93ac63f8c261/jupysql-0.10.17.tar.gz",
"platform": null,
"description": "# JupySQL\n\n\n\n[](https://badge.fury.io/py/jupysql)\n[](https://twitter.com/intent/user?screen_name=ploomber)\n[](https://github.com/psf/black)\n[](https://pepy.tech/project/jupysql)\n\n<p align=\"center\">\n <a href=\"https://ploomber.io/community\">Join our community</a>\n |\n <a href=\"https://share.hsforms.com/1E7Qa_OpcRPi_MV-segFsaAe6c2g\">Newsletter</a>\n |\n <a href=\"mailto:contact@ploomber.io\">Contact us</a>\n |\n <a href=\"https://jupysql.ploomber.io/\">Docs</a>\n |\n <a href=\"https://ploomber.io/blog\">Blog</a>\n |\n <a href=\"https://ploomber.io\">Website</a>\n |\n <a href=\"https://www.youtube.com/channel/UCaIS5BMlmeNQE4-Gn0xTDXQ\">YouTube</a>\n</p>\n\n> [!TIP]\n> Deploy Streamlit and Dash apps for free on [Ploomber Cloud!](https://www.platform.ploomber.io/register/?utm_medium=github&utm_source=jupysql)\n\nRun SQL in Jupyter/IPython via a `%sql` and `%%sql` magics.\n\n## Features\n\n- [Pandas integration](https://jupysql.ploomber.io/en/latest/integrations/pandas.html)\n- [SQL composition (no more hard-to-debug CTEs!)](https://jupysql.ploomber.io/en/latest/compose.html)\n- [Plot massive datasets without blowing up memory](https://jupysql.ploomber.io/en/latest/plot.html)\n- [DuckDB integration](https://jupysql.ploomber.io/en/latest/integrations/duckdb.html)\n\n## Installation\n\n```\npip install jupysql\n```\n\nor:\n\n```\nconda install jupysql -c conda-forge\n```\n\n## Documentation\n\n[Click here to see the documentation.](https://jupysql.ploomber.io)\n\n\n## Credits\n\nThis project is a fork of [ipython-sql](https://github.com/catherinedevlin/ipython-sql); the objective is to turn this project into a full-featured SQL client for Jupyter. We're looking for feedback and taking feature requests, so please [join our community](https://ploomber.io/community) and enter the #jupysql channel.\n",
"bugtrack_url": null,
"license": null,
"summary": "Better SQL in Jupyter",
"version": "0.10.17",
"project_urls": {
"Homepage": "https://github.com/ploomber/jupysql",
"Source": "https://github.com/ploomber/jupysql"
},
"split_keywords": [
"database",
"ipython",
"postgresql",
"mysql",
"duckdb"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "cdd5e8ac71e735ce96c76b32fcbd657255179f625deae2aae3e2611e139bb878",
"md5": "1039920046a97a417009000a5c27b51b",
"sha256": "fdab91d52aefff18fdc92752ab3c25fe56d5546c7b4c032a793b44f57496f91d"
},
"downloads": -1,
"filename": "jupysql-0.10.17-py3-none-any.whl",
"has_sig": false,
"md5_digest": "1039920046a97a417009000a5c27b51b",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 95161,
"upload_time": "2025-01-08T14:28:55",
"upload_time_iso_8601": "2025-01-08T14:28:55.594565Z",
"url": "https://files.pythonhosted.org/packages/cd/d5/e8ac71e735ce96c76b32fcbd657255179f625deae2aae3e2611e139bb878/jupysql-0.10.17-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "8dd3cbcf345839ba992e3c8bb0c41237b445f5eae0a814f0fcbc93ac63f8c261",
"md5": "a1e33b81439f324e5912ad2045281b9d",
"sha256": "021f162b83115c9f332db2a09977a9a9a9207f961960aabccea8b30a8945e988"
},
"downloads": -1,
"filename": "jupysql-0.10.17.tar.gz",
"has_sig": false,
"md5_digest": "a1e33b81439f324e5912ad2045281b9d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 80990,
"upload_time": "2025-01-08T14:28:57",
"upload_time_iso_8601": "2025-01-08T14:28:57.177748Z",
"url": "https://files.pythonhosted.org/packages/8d/d3/cbcf345839ba992e3c8bb0c41237b445f5eae0a814f0fcbc93ac63f8c261/jupysql-0.10.17.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-08 14:28:57",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ploomber",
"github_project": "jupysql",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "jupysql"
}