# Meili Submodule
This submodule provides hybrid search functionality using Meilisearch, combining the power of full-text search with vector similarity search for enhanced search results.
## Features
- 🔄 Hybrid search combining semantic and keyword search with adjustable ratios
- 🚀 Asynchronous operations support
- 📦 Automatic vector store enablement
- 🔑 Configurable authentication and settings
- 🎯 Support for multiple embedding models
- 📄 Smart document handling with metadata preservation
Raw data
{
"_id": null,
"home_page": null,
"name": "just-semantic-search-meili-cuda",
"maintainer": null,
"docs_url": null,
"requires_python": "<3.15,>=3.10",
"maintainer_email": null,
"keywords": "python, llm, gpu, cuda, science, review, hybrid search, semantic search, meilisearch, vector database",
"author": "Anton Kulaga",
"author_email": "antonkulaga@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/5a/1d/9cea20aad6f641d72b6d56a3fdce265231b36d3f277f0b5565a2ad6ec0f7/just_semantic_search_meili_cuda-0.4.5.tar.gz",
"platform": null,
"description": "# Meili Submodule\n\nThis submodule provides hybrid search functionality using Meilisearch, combining the power of full-text search with vector similarity search for enhanced search results.\n\n## Features\n\n- \ud83d\udd04 Hybrid search combining semantic and keyword search with adjustable ratios\n- \ud83d\ude80 Asynchronous operations support\n- \ud83d\udce6 Automatic vector store enablement\n- \ud83d\udd11 Configurable authentication and settings\n- \ud83c\udfaf Support for multiple embedding models\n- \ud83d\udcc4 Smart document handling with metadata preservation\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "Core interfaces for hybrid search implementations (CUDA version)",
"version": "0.4.5",
"project_urls": null,
"split_keywords": [
"python",
" llm",
" gpu",
" cuda",
" science",
" review",
" hybrid search",
" semantic search",
" meilisearch",
" vector database"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "a2e8273847299b998dee2b36212c423799ae401118b49bdb1032bfb92714c0df",
"md5": "5d9dcad845e2ff1d22a77fd387660308",
"sha256": "51e0a79b8b2840ef9fdf7f3885e4729550195dd4e1ee1d0362677089f3104e6b"
},
"downloads": -1,
"filename": "just_semantic_search_meili_cuda-0.4.5-py3-none-any.whl",
"has_sig": false,
"md5_digest": "5d9dcad845e2ff1d22a77fd387660308",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<3.15,>=3.10",
"size": 16983,
"upload_time": "2025-09-04T15:12:47",
"upload_time_iso_8601": "2025-09-04T15:12:47.532638Z",
"url": "https://files.pythonhosted.org/packages/a2/e8/273847299b998dee2b36212c423799ae401118b49bdb1032bfb92714c0df/just_semantic_search_meili_cuda-0.4.5-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "5a1d9cea20aad6f641d72b6d56a3fdce265231b36d3f277f0b5565a2ad6ec0f7",
"md5": "7bc844d1f8822cd41d57a985115c7428",
"sha256": "4b70f7dc96277ae40efb5f23e3e9491076119bae9e31df5999dc120d525f9862"
},
"downloads": -1,
"filename": "just_semantic_search_meili_cuda-0.4.5.tar.gz",
"has_sig": false,
"md5_digest": "7bc844d1f8822cd41d57a985115c7428",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<3.15,>=3.10",
"size": 12976,
"upload_time": "2025-09-04T15:12:49",
"upload_time_iso_8601": "2025-09-04T15:12:49.008369Z",
"url": "https://files.pythonhosted.org/packages/5a/1d/9cea20aad6f641d72b6d56a3fdce265231b36d3f277f0b5565a2ad6ec0f7/just_semantic_search_meili_cuda-0.4.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-09-04 15:12:49",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "just-semantic-search-meili-cuda"
}