kabutobashi


Namekabutobashi JSON
Version 0.8.7 PyPI version JSON
download
home_pagehttps://github.com/gsy0911/kabutobashi
SummaryAnalyze stock
upload_time2024-08-16 02:08:09
maintainerNone
docs_urlNone
authoryoshiki
requires_python<3.13,>=3.10
licenseMIT
keywords stock
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # kabutobashi

[![pytest](https://github.com/gsy0911/kabutobashi/workflows/pytest/badge.svg)](https://github.com/gsy0911/kabutobashi/actions?query=workflow%3Apytest)
[![codecov](https://codecov.io/gh/gsy0911/kabutobashi/branch/main/graph/badge.svg)](https://codecov.io/gh/gsy0911/kabutobashi)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![Imports: isort](https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336)](https://pycqa.github.io/isort/)
[![Checked with mypy](http://www.mypy-lang.org/static/mypy_badge.svg)](http://mypy-lang.org/)

[![PythonVersion](https://img.shields.io/pypi/pyversions/kabutobashi.svg)](https://pypi.org/project/kabutobashi/)
[![PiPY](https://img.shields.io/pypi/v/kabutobashi.svg)](https://pypi.org/project/kabutobashi/)
[![Documentation Status](https://readthedocs.org/projects/kabutobashi/badge/?version=latest)](https://kabutobashi.readthedocs.io/en/latest/?badge=latest)

# Core Concept

`@block`-decorator and `Flow`-class is important.
`@block` automatically generates input and output functions, allowing you to focus solely on the processing.
`Flow` allows you to focus solely on the process flow and input parameters.

## About `@block`-decorator

simple decorator is like below.

```python
def simple_decorator(func):
    def wrap_func() -> str:
        res = func()
        return f"Hello, {res}"
    return wrap_func


@simple_decorator
def world() -> str:
    return "world"


world()  # => "Hello, world"
```

A `decorator` is something that dynamically generates and adds processes to functions or classes, similar to its name.


First, prepare a function as follows and decorate it with `@block`.

```python
from kabutobashi import block

@block()
class UdfBlock:
    term: int = 10

    def _process(self):
        return {"doubled_term": self.term * 2}
```

The classes above is equivalent to the following class definition.

```python
import pandas as pd
from kabutobashi.domain.entity.blocks import BlockGlue

class UdfBlock:
    series: pd.DataFrame = None
    params: dict = None
    term: int = 10
    block_name: str = "udf_block"

    def _process(self) -> dict:
        return {"doubled_term": self.term * 2}
    
    def process(self) -> BlockGlue:
        # _process() method can be Tuple[Optional[dict], Optional[pd.DataFrame]]
        res = self._process()
        return BlockGlue(params=res, series=None, block_outputs={})

    def factory(self, glue: BlockGlue) -> "UdfBlock":
        # Omitted. In reality, processes are described.
        ...

    def _factory(self, glue: BlockGlue) -> dict:
        # Omitted. In reality, processes are described.
        ...

    def glue(self, glue: BlockGlue) -> BlockGlue:
        # Omitted. In reality, processes are described.
        ...

```

In classes decorated with `@block`, it is not recommended to execute the `__init__()` method. Instead, it is recommended to use the `factory()` class-method.

`factory()` method description.
`process()` method description.
`glue()` method description.

```mermaid
sequenceDiagram
  autonumber
  participant G as glue()
  participant UC as UdfBlock::class
  create participant S1 as factory()
  UC->>S1: create
  create participant S2 as _factory()
  UC->>S2: create or defined by user
  create participant P1 as process()
  UC->>P1: create
  create participant P2 as _process()
  UC->>P2: create or defined by user
  Note over S1: Generate udf_block_instance
  G->>+S1: Request
  S1->>+S2: Request
  Note over S2: User can modify _factory()
  S2-->>S2: get params from glue
  S2-->>S2: get series from glue
  S2-->>-S1: params and series
  create participant UI as UdfBlock::instance
  S1->>UI: UdfBlock(params, series)
  S1->>UI: setattr params to udf_block_instance
  S1-->>-G: udf_block_instance
  G->>+UI: udf_block_instance.process()
  UI->>+P1: process()
  Note over P1: execute process()
  P1->>P2: Request
  Note over P2: execute user defined function
  P2-->>P1: params or series
  P1-->>-UI: BlockGlue(params, series)
  UI-->>-G: block_glue_instance
```


Up to this point, the use of the `@block` decorator with classes such as UdfClass has described, but using the Block class on its own is not intended. Please read the following explanation of the `Flow` class for more details.

## About `Flow`-class

> Blocks are meant to be combined.

Processes always consist of combinations of multiple simple operations. And the only tedious part is aligning their inputs and outputs.

Therefore, in `Flow`-class, it automatically resolves the sequence of those processes for users, as long as you provide the initial values.

## usage

```python
import kabutobashi as kb

# n日前までの営業日の日付リストを取得する関数
target_date = "2020-01-01"
date_list = kb.get_past_n_days(target_date, n=40)
```

## initialize Database

```python
import kabutobashi as kb
kb.KabutobashiDatabase().initialize()

# add data
kb.crawl_info_multiple(code="1375", page="1", database_dir="...")
kb.crawl_info_multiple(code="1375", page="2", database_dir="...")
kb.crawl_info_multiple(code="1375", page="etc...", database_dir="...")

# add data daily
kb.crawl_info(code="1375", database_dir="...")

# analysis and add data
kb.analysis(code="1375", database_dir="...")
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/gsy0911/kabutobashi",
    "name": "kabutobashi",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.13,>=3.10",
    "maintainer_email": null,
    "keywords": "stock",
    "author": "yoshiki",
    "author_email": "yoshiki0911@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/76/91/67713d64c5aa88332d107d3ef48012e1a87eff54e945c37278af4edd55ad/kabutobashi-0.8.7.tar.gz",
    "platform": null,
    "description": "# kabutobashi\n\n[![pytest](https://github.com/gsy0911/kabutobashi/workflows/pytest/badge.svg)](https://github.com/gsy0911/kabutobashi/actions?query=workflow%3Apytest)\n[![codecov](https://codecov.io/gh/gsy0911/kabutobashi/branch/main/graph/badge.svg)](https://codecov.io/gh/gsy0911/kabutobashi)\n[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\n[![Imports: isort](https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336)](https://pycqa.github.io/isort/)\n[![Checked with mypy](http://www.mypy-lang.org/static/mypy_badge.svg)](http://mypy-lang.org/)\n\n[![PythonVersion](https://img.shields.io/pypi/pyversions/kabutobashi.svg)](https://pypi.org/project/kabutobashi/)\n[![PiPY](https://img.shields.io/pypi/v/kabutobashi.svg)](https://pypi.org/project/kabutobashi/)\n[![Documentation Status](https://readthedocs.org/projects/kabutobashi/badge/?version=latest)](https://kabutobashi.readthedocs.io/en/latest/?badge=latest)\n\n# Core Concept\n\n`@block`-decorator and `Flow`-class is important.\n`@block` automatically generates input and output functions, allowing you to focus solely on the processing.\n`Flow` allows you to focus solely on the process flow and input parameters.\n\n## About `@block`-decorator\n\nsimple decorator is like below.\n\n```python\ndef simple_decorator(func):\n    def wrap_func() -> str:\n        res = func()\n        return f\"Hello, {res}\"\n    return wrap_func\n\n\n@simple_decorator\ndef world() -> str:\n    return \"world\"\n\n\nworld()  # => \"Hello, world\"\n```\n\nA `decorator` is something that dynamically generates and adds processes to functions or classes, similar to its name.\n\n\nFirst, prepare a function as follows and decorate it with `@block`.\n\n```python\nfrom kabutobashi import block\n\n@block()\nclass UdfBlock:\n    term: int = 10\n\n    def _process(self):\n        return {\"doubled_term\": self.term * 2}\n```\n\nThe classes above is equivalent to the following class definition.\n\n```python\nimport pandas as pd\nfrom kabutobashi.domain.entity.blocks import BlockGlue\n\nclass UdfBlock:\n    series: pd.DataFrame = None\n    params: dict = None\n    term: int = 10\n    block_name: str = \"udf_block\"\n\n    def _process(self) -> dict:\n        return {\"doubled_term\": self.term * 2}\n    \n    def process(self) -> BlockGlue:\n        # _process() method can be Tuple[Optional[dict], Optional[pd.DataFrame]]\n        res = self._process()\n        return BlockGlue(params=res, series=None, block_outputs={})\n\n    def factory(self, glue: BlockGlue) -> \"UdfBlock\":\n        # Omitted. In reality, processes are described.\n        ...\n\n    def _factory(self, glue: BlockGlue) -> dict:\n        # Omitted. In reality, processes are described.\n        ...\n\n    def glue(self, glue: BlockGlue) -> BlockGlue:\n        # Omitted. In reality, processes are described.\n        ...\n\n```\n\nIn classes decorated with `@block`, it is not recommended to execute the `__init__()` method. Instead, it is recommended to use the `factory()` class-method.\n\n`factory()` method description.\n`process()` method description.\n`glue()` method description.\n\n```mermaid\nsequenceDiagram\n  autonumber\n  participant G as glue()\n  participant UC as UdfBlock::class\n  create participant S1 as factory()\n  UC->>S1: create\n  create participant S2 as _factory()\n  UC->>S2: create or defined by user\n  create participant P1 as process()\n  UC->>P1: create\n  create participant P2 as _process()\n  UC->>P2: create or defined by user\n  Note over S1: Generate udf_block_instance\n  G->>+S1: Request\n  S1->>+S2: Request\n  Note over S2: User can modify _factory()\n  S2-->>S2: get params from glue\n  S2-->>S2: get series from glue\n  S2-->>-S1: params and series\n  create participant UI as UdfBlock::instance\n  S1->>UI: UdfBlock(params, series)\n  S1->>UI: setattr params to udf_block_instance\n  S1-->>-G: udf_block_instance\n  G->>+UI: udf_block_instance.process()\n  UI->>+P1: process()\n  Note over P1: execute process()\n  P1->>P2: Request\n  Note over P2: execute user defined function\n  P2-->>P1: params or series\n  P1-->>-UI: BlockGlue(params, series)\n  UI-->>-G: block_glue_instance\n```\n\n\nUp to this point, the use of the `@block` decorator with classes such as UdfClass has described, but using the Block class on its own is not intended. Please read the following explanation of the `Flow` class for more details.\n\n## About `Flow`-class\n\n> Blocks are meant to be combined.\n\nProcesses always consist of combinations of multiple simple operations. And the only tedious part is aligning their inputs and outputs.\n\nTherefore, in `Flow`-class, it automatically resolves the sequence of those processes for users, as long as you provide the initial values.\n\n## usage\n\n```python\nimport kabutobashi as kb\n\n# n\u65e5\u524d\u307e\u3067\u306e\u55b6\u696d\u65e5\u306e\u65e5\u4ed8\u30ea\u30b9\u30c8\u3092\u53d6\u5f97\u3059\u308b\u95a2\u6570\ntarget_date = \"2020-01-01\"\ndate_list = kb.get_past_n_days(target_date, n=40)\n```\n\n## initialize Database\n\n```python\nimport kabutobashi as kb\nkb.KabutobashiDatabase().initialize()\n\n# add data\nkb.crawl_info_multiple(code=\"1375\", page=\"1\", database_dir=\"...\")\nkb.crawl_info_multiple(code=\"1375\", page=\"2\", database_dir=\"...\")\nkb.crawl_info_multiple(code=\"1375\", page=\"etc...\", database_dir=\"...\")\n\n# add data daily\nkb.crawl_info(code=\"1375\", database_dir=\"...\")\n\n# analysis and add data\nkb.analysis(code=\"1375\", database_dir=\"...\")\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Analyze stock",
    "version": "0.8.7",
    "project_urls": {
        "Homepage": "https://github.com/gsy0911/kabutobashi",
        "Repository": "https://github.com/gsy0911/kabutobashi"
    },
    "split_keywords": [
        "stock"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "78440e7006b9436aba56ba6c4ed4246496e7066db871d255b05f43b09a9dbf35",
                "md5": "5d2e56277377d157088124fc781ab56f",
                "sha256": "976d719b2d57aec1c185119e10249a6358c0cc199a25a39dd6e6eb6fbac738be"
            },
            "downloads": -1,
            "filename": "kabutobashi-0.8.7-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "5d2e56277377d157088124fc781ab56f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.13,>=3.10",
            "size": 56440,
            "upload_time": "2024-08-16T02:08:07",
            "upload_time_iso_8601": "2024-08-16T02:08:07.831773Z",
            "url": "https://files.pythonhosted.org/packages/78/44/0e7006b9436aba56ba6c4ed4246496e7066db871d255b05f43b09a9dbf35/kabutobashi-0.8.7-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "769167713d64c5aa88332d107d3ef48012e1a87eff54e945c37278af4edd55ad",
                "md5": "10e692040ac391cf5b9b9495dccbadef",
                "sha256": "26b1b575addf0e621acb78f6b8f893c7b7745a364ccbdb245bc993206d821f89"
            },
            "downloads": -1,
            "filename": "kabutobashi-0.8.7.tar.gz",
            "has_sig": false,
            "md5_digest": "10e692040ac391cf5b9b9495dccbadef",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.13,>=3.10",
            "size": 32742,
            "upload_time": "2024-08-16T02:08:09",
            "upload_time_iso_8601": "2024-08-16T02:08:09.603052Z",
            "url": "https://files.pythonhosted.org/packages/76/91/67713d64c5aa88332d107d3ef48012e1a87eff54e945c37278af4edd55ad/kabutobashi-0.8.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-16 02:08:09",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "gsy0911",
    "github_project": "kabutobashi",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "kabutobashi"
}
        
Elapsed time: 3.21220s