keras-mixed-sequence


Namekeras-mixed-sequence JSON
Version 1.0.29 PyPI version JSON
download
home_pagehttps://github.com/LucaCappelletti94/keras_mixed_sequence
SummaryLazily loading mixed sequences using Keras Sequence, focused on multi-task models.
upload_time2024-02-03 09:40:32
maintainer
docs_urlNone
authorLuca Cappelletti
requires_python>3.5.2
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            keras_mixed_sequence
=========================================================================================
|pip| |downloads|

Lazily loading mixed sequences using Keras Sequence,
focused on multi-task models.

How do I install this package?
----------------------------------------------
As usual, just download it using pip:

.. code:: shell

    pip install keras_mixed_sequence


Usage examples
----------------------------------------------

Example for traditional single-task models
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
First of all let's create a simple single-task model:

.. code:: python

    from tensorflow.keras.layers import Dense
    from tensorflow.keras.models import Sequential

    model = Sequential([
        Dense(1, activation="relu")
    ])
    model.compile(
        optimizer="nadam",
        loss="relu"
    )

Then we proceed to load or otherwise create the training data.
Here there will be listed, in the future, some custom
Sequence objects that have been created for the purpose
of being used alongside this library.

.. code:: python

    X = either_a_numpy_array_or_sequence_for_input
    y = either_a_numpy_array_or_sequence_for_output

Now we combine the training data using the MixedSequence
object.

.. code:: python

    from keras_mixed_sequence import MixedSequence

    sequence = MixedSequence(
        X, y,
        batch_size=batch_size
    )

Finally, we can train the model:

.. code:: python

    from multiprocessing import cpu_count

    model.fit_generator(
        sequence,
        steps_per_epoch=sequence.steps_per_epoch,
        epochs=2,
        verbose=0,
        use_multiprocessing=True,
        workers=cpu_count(),
        shuffle=True
    )


Example for multi-task models
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
First of all let's create a simple multi-taks model:

.. code:: python

    from tensorflow.keras.models import Model
    from tensorflow.keras.layers import Dense, Input

    inputs = Input(shape=(10,))

    output1 = Dense(
        units=10,
        activation="relu",
        name="output1"
    )(inputs)
    output2 = Dense(
        units=10,
        activation="relu",
        name="output2"
    )(inputs)

    model = Model(
        inputs=inputs,
        outputs=[output1, output2],
        name="my_model"
    )

    model.compile(
        optimizer="nadam",
        loss="MSE"
    )

Then we proceed to load or otherwise create the training data.
Here there will be listed, in the future, some custom
Sequence objects that have been created for the purpose
of being used alongside this library.

.. code:: python

    X = either_a_numpy_array_or_sequence_for_input
    y1 = either_a_numpy_array_or_sequence_for_output1
    y2 = either_a_numpy_array_or_sequence_for_output2

Now we combine the training data using the MixedSequence
object.

.. code:: python

    from keras_mixed_sequence import MixedSequence

    sequence = MixedSequence(
        x=X,
        y={
            "output1": y1,
            "output2": y2
        },
        batch_size=batch_size
    )

Finally, we can train the model:

.. code:: python

    from multiprocessing import cpu_count

    model.fit_generator(
        sequence,
        steps_per_epoch=sequence.steps_per_epoch,
        epochs=2,
        verbose=0,
        use_multiprocessing=True,
        workers=cpu_count(),
        shuffle=True
    )


.. |pip| image:: https://badge.fury.io/py/keras-mixed-sequence.svg
    :target: https://badge.fury.io/py/keras-mixed-sequence
    :alt: Pypi project

.. |downloads| image:: https://pepy.tech/badge/keras-mixed-sequence
    :target: https://pepy.tech/badge/keras-mixed-sequence
    :alt: Pypi total project downloads




            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/LucaCappelletti94/keras_mixed_sequence",
    "name": "keras-mixed-sequence",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">3.5.2",
    "maintainer_email": "",
    "keywords": "",
    "author": "Luca Cappelletti",
    "author_email": "cappelletti.luca94@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/26/97/0f66d9fa1579eaded44a0c572c8e2e9d2daa89f5d911d45f0307e8d2be73/keras_mixed_sequence-1.0.29.tar.gz",
    "platform": null,
    "description": "keras_mixed_sequence\n=========================================================================================\n|pip| |downloads|\n\nLazily loading mixed sequences using Keras Sequence,\nfocused on multi-task models.\n\nHow do I install this package?\n----------------------------------------------\nAs usual, just download it using pip:\n\n.. code:: shell\n\n    pip install keras_mixed_sequence\n\n\nUsage examples\n----------------------------------------------\n\nExample for traditional single-task models\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\nFirst of all let's create a simple single-task model:\n\n.. code:: python\n\n    from tensorflow.keras.layers import Dense\n    from tensorflow.keras.models import Sequential\n\n    model = Sequential([\n        Dense(1, activation=\"relu\")\n    ])\n    model.compile(\n        optimizer=\"nadam\",\n        loss=\"relu\"\n    )\n\nThen we proceed to load or otherwise create the training data.\nHere there will be listed, in the future, some custom\nSequence objects that have been created for the purpose\nof being used alongside this library.\n\n.. code:: python\n\n    X = either_a_numpy_array_or_sequence_for_input\n    y = either_a_numpy_array_or_sequence_for_output\n\nNow we combine the training data using the MixedSequence\nobject.\n\n.. code:: python\n\n    from keras_mixed_sequence import MixedSequence\n\n    sequence = MixedSequence(\n        X, y,\n        batch_size=batch_size\n    )\n\nFinally, we can train the model:\n\n.. code:: python\n\n    from multiprocessing import cpu_count\n\n    model.fit_generator(\n        sequence,\n        steps_per_epoch=sequence.steps_per_epoch,\n        epochs=2,\n        verbose=0,\n        use_multiprocessing=True,\n        workers=cpu_count(),\n        shuffle=True\n    )\n\n\nExample for multi-task models\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\nFirst of all let's create a simple multi-taks model:\n\n.. code:: python\n\n    from tensorflow.keras.models import Model\n    from tensorflow.keras.layers import Dense, Input\n\n    inputs = Input(shape=(10,))\n\n    output1 = Dense(\n        units=10,\n        activation=\"relu\",\n        name=\"output1\"\n    )(inputs)\n    output2 = Dense(\n        units=10,\n        activation=\"relu\",\n        name=\"output2\"\n    )(inputs)\n\n    model = Model(\n        inputs=inputs,\n        outputs=[output1, output2],\n        name=\"my_model\"\n    )\n\n    model.compile(\n        optimizer=\"nadam\",\n        loss=\"MSE\"\n    )\n\nThen we proceed to load or otherwise create the training data.\nHere there will be listed, in the future, some custom\nSequence objects that have been created for the purpose\nof being used alongside this library.\n\n.. code:: python\n\n    X = either_a_numpy_array_or_sequence_for_input\n    y1 = either_a_numpy_array_or_sequence_for_output1\n    y2 = either_a_numpy_array_or_sequence_for_output2\n\nNow we combine the training data using the MixedSequence\nobject.\n\n.. code:: python\n\n    from keras_mixed_sequence import MixedSequence\n\n    sequence = MixedSequence(\n        x=X,\n        y={\n            \"output1\": y1,\n            \"output2\": y2\n        },\n        batch_size=batch_size\n    )\n\nFinally, we can train the model:\n\n.. code:: python\n\n    from multiprocessing import cpu_count\n\n    model.fit_generator(\n        sequence,\n        steps_per_epoch=sequence.steps_per_epoch,\n        epochs=2,\n        verbose=0,\n        use_multiprocessing=True,\n        workers=cpu_count(),\n        shuffle=True\n    )\n\n\n.. |pip| image:: https://badge.fury.io/py/keras-mixed-sequence.svg\n    :target: https://badge.fury.io/py/keras-mixed-sequence\n    :alt: Pypi project\n\n.. |downloads| image:: https://pepy.tech/badge/keras-mixed-sequence\n    :target: https://pepy.tech/badge/keras-mixed-sequence\n    :alt: Pypi total project downloads\n\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Lazily loading mixed sequences using Keras Sequence, focused on multi-task models.",
    "version": "1.0.29",
    "project_urls": {
        "Homepage": "https://github.com/LucaCappelletti94/keras_mixed_sequence"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "26970f66d9fa1579eaded44a0c572c8e2e9d2daa89f5d911d45f0307e8d2be73",
                "md5": "f284371a3bb9e306af1e5bed60dbd9d9",
                "sha256": "4d49f4325988dccd9d1f6d1ea53e1fc0be8a4479545387f79db7d9245ed66e91"
            },
            "downloads": -1,
            "filename": "keras_mixed_sequence-1.0.29.tar.gz",
            "has_sig": false,
            "md5_digest": "f284371a3bb9e306af1e5bed60dbd9d9",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">3.5.2",
            "size": 7056,
            "upload_time": "2024-02-03T09:40:32",
            "upload_time_iso_8601": "2024-02-03T09:40:32.918073Z",
            "url": "https://files.pythonhosted.org/packages/26/97/0f66d9fa1579eaded44a0c572c8e2e9d2daa89f5d911d45f0307e8d2be73/keras_mixed_sequence-1.0.29.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-03 09:40:32",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "LucaCappelletti94",
    "github_project": "keras_mixed_sequence",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "keras-mixed-sequence"
}
        
Elapsed time: 0.19765s