keyword-spacy


Namekeyword-spacy JSON
Version 0.1.2 PyPI version JSON
download
home_pagehttps://github.com/wjbmattingly/keyword-spacy
SummaryA spaCy pipeline component for extracting keywords from text using cosine similarity.
upload_time2023-08-25 16:12:19
maintainer
docs_urlNone
authorWJB Mattingly
requires_python
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![GitHub Stars](https://img.shields.io/github/stars/wjbmattingly/keyword-spacy?style=social)](https://github.com/wjbmattingly/keyword-spacy)
[![PyPi Version](https://img.shields.io/pypi/v/keyword-spacy)](https://pypi.org/project/keyword-spacy/0.0.1/)
[![PyPi Downloads](https://img.shields.io/pypi/dm/keyword-spacy)](https://pypi.org/project/keyword-spacy/0.0.1/)

# 🔑 Keyword spaCy

![keyword spacy](https://github.com/wjbmattingly/keyword-spacy/blob/main/images/keyword-spacy-logo.png?raw=true)

Keyword spaCy is a spaCy pipeline component for extracting keywords from text using cosine similarity. The basis for this comes from [KeyBERT: A Minimal Method for Keyphrase Extraction using BERT](https://github.com/MaartenGr/KeyBERT), a transformer-based approach to keyword extraction. The methods employed by Keyword spaCy follow this methodology closely. It allows users to specify the range of n-grams to consider and can operate in a strict mode, which limits results to the specified n-gram range.

## Installation

Before using Keyword spaCy, make sure you have spaCy installed:

```
pip install keyword-spacy
```

Then, download the `en_core_web_md` model:

```
python -m spacy download en_core_web_md
```

## Usage

To use the Keyword Extractor, first, create a spaCy `nlp` object:

```python
import spacy
nlp = spacy.load("en_core_web_md")
```

Then, add the `KeywordExtractor` to the pipeline:

```python
nlp.add_pipe("keyword_extractor", last=True, config={"top_n": 10, "min_ngram": 3, "max_ngram": 3, "strict": True})
```

Now you can process text and extract keywords:

```python
text = "Natural language processing is a fascinating domain of artificial intelligence. It allows computers to understand and generate human language."
doc = nlp(text)
print("Top Keywords:", doc._.keywords)
```
Output:
```
Top Keywords: ['generate human language', 'Natural language processing']
```

Each token that is not a punctuation also receives a special attribute `._.keyword_value`, this is the value of a given word's similarity to the `doc.vector`. This may be helpful for other downstream tasks.

## Configuration

The `KeywordExtractor` can be configured using the following parameters:

- `top_n`: The number of top keywords to extract.
- `min_ngram`: The minimum size for n-grams.
- `max_ngram`: The maximum size for n-grams.
- `strict`: If set to `True`, only n-grams within the `min_ngram` to `max_ngram` range are considered. If `False`, individual tokens and the specified range of n-grams are considered.

## Methodology

The methodology employed by Keyword spaCy is inspired by [KeyBERT](https://github.com/MaartenGr/KeyBERT). It utilizes cosine similarity between tokens (and n-grams) and the entire document to determine the relevance of terms. The most similar terms are then considered as keywords.

## References

- [KeyBERT: A Minimal Method for Keyphrase Extraction using BERT](https://github.com/MaartenGr/KeyBERT)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/wjbmattingly/keyword-spacy",
    "name": "keyword-spacy",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "WJB Mattingly",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/b5/6a/6ac144946514b8564d9854a8c0e1743b0d6c01f16004d222f1ef46843954/keyword_spacy-0.1.2.tar.gz",
    "platform": null,
    "description": "[![GitHub Stars](https://img.shields.io/github/stars/wjbmattingly/keyword-spacy?style=social)](https://github.com/wjbmattingly/keyword-spacy)\n[![PyPi Version](https://img.shields.io/pypi/v/keyword-spacy)](https://pypi.org/project/keyword-spacy/0.0.1/)\n[![PyPi Downloads](https://img.shields.io/pypi/dm/keyword-spacy)](https://pypi.org/project/keyword-spacy/0.0.1/)\n\n# \ud83d\udd11 Keyword spaCy\n\n![keyword spacy](https://github.com/wjbmattingly/keyword-spacy/blob/main/images/keyword-spacy-logo.png?raw=true)\n\nKeyword spaCy is a spaCy pipeline component for extracting keywords from text using cosine similarity. The basis for this comes from [KeyBERT: A Minimal Method for Keyphrase Extraction using BERT](https://github.com/MaartenGr/KeyBERT), a transformer-based approach to keyword extraction. The methods employed by Keyword spaCy follow this methodology closely. It allows users to specify the range of n-grams to consider and can operate in a strict mode, which limits results to the specified n-gram range.\n\n## Installation\n\nBefore using Keyword spaCy, make sure you have spaCy installed:\n\n```\npip install keyword-spacy\n```\n\nThen, download the `en_core_web_md` model:\n\n```\npython -m spacy download en_core_web_md\n```\n\n## Usage\n\nTo use the Keyword Extractor, first, create a spaCy `nlp` object:\n\n```python\nimport spacy\nnlp = spacy.load(\"en_core_web_md\")\n```\n\nThen, add the `KeywordExtractor` to the pipeline:\n\n```python\nnlp.add_pipe(\"keyword_extractor\", last=True, config={\"top_n\": 10, \"min_ngram\": 3, \"max_ngram\": 3, \"strict\": True})\n```\n\nNow you can process text and extract keywords:\n\n```python\ntext = \"Natural language processing is a fascinating domain of artificial intelligence. It allows computers to understand and generate human language.\"\ndoc = nlp(text)\nprint(\"Top Keywords:\", doc._.keywords)\n```\nOutput:\n```\nTop Keywords: ['generate human language', 'Natural language processing']\n```\n\nEach token that is not a punctuation also receives a special attribute `._.keyword_value`, this is the value of a given word's similarity to the `doc.vector`. This may be helpful for other downstream tasks.\n\n## Configuration\n\nThe `KeywordExtractor` can be configured using the following parameters:\n\n- `top_n`: The number of top keywords to extract.\n- `min_ngram`: The minimum size for n-grams.\n- `max_ngram`: The maximum size for n-grams.\n- `strict`: If set to `True`, only n-grams within the `min_ngram` to `max_ngram` range are considered. If `False`, individual tokens and the specified range of n-grams are considered.\n\n## Methodology\n\nThe methodology employed by Keyword spaCy is inspired by [KeyBERT](https://github.com/MaartenGr/KeyBERT). It utilizes cosine similarity between tokens (and n-grams) and the entire document to determine the relevance of terms. The most similar terms are then considered as keywords.\n\n## References\n\n- [KeyBERT: A Minimal Method for Keyphrase Extraction using BERT](https://github.com/MaartenGr/KeyBERT)\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "A spaCy pipeline component for extracting keywords from text using cosine similarity.",
    "version": "0.1.2",
    "project_urls": {
        "Homepage": "https://github.com/wjbmattingly/keyword-spacy"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b56a6ac144946514b8564d9854a8c0e1743b0d6c01f16004d222f1ef46843954",
                "md5": "46b5ee0d8aba15185dda37f4588fc397",
                "sha256": "f1235f8e5fbff1429f70cd07953e3993d7e71df7925b45fa46d6915a14f16bbf"
            },
            "downloads": -1,
            "filename": "keyword_spacy-0.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "46b5ee0d8aba15185dda37f4588fc397",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 3591,
            "upload_time": "2023-08-25T16:12:19",
            "upload_time_iso_8601": "2023-08-25T16:12:19.346256Z",
            "url": "https://files.pythonhosted.org/packages/b5/6a/6ac144946514b8564d9854a8c0e1743b0d6c01f16004d222f1ef46843954/keyword_spacy-0.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-08-25 16:12:19",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "wjbmattingly",
    "github_project": "keyword-spacy",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "keyword-spacy"
}
        
Elapsed time: 0.10588s