kinase-library


Namekinase-library JSON
Version 1.0.3 PyPI version JSON
download
home_pageNone
SummaryThe Kinase Library Project: a Global Atlas of the Human Protein Kinome
upload_time2024-12-13 16:19:35
maintainerNone
docs_urlNone
authorNone
requires_python<=3.13,>=3.10
licenseCreative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported
keywords kinase phosphorylation substrate motif substrate specificity cell signaling signaling phosphoproteomics kinase enrichment signaling network kinome peptide library phosphosite
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
    <picture>
        <img src="https://i.imgur.com/Y6PmRsQ.jpeg" alt="The Kinase Library" width="50%">
    </picture>

<hr/>

# [Click here for The Kinase Library Web Tool](https://kinase-library.phosphosite.org)

<picture>
    <img src="https://i.imgur.com/sWUA4Rk.png" alt="The Kinase Library QR Code" width="20%">
</picture>

[![Twitter Follow](https://img.shields.io/twitter/follow/KinaseLibrary?style=social)](https://twitter.com/KinaseLibrary) &ensp;
[![License: CC BY-NC-SA 3.0](https://img.shields.io/badge/License-CC%20BY--NC--SA%203.0-lightgrey.svg)](https://creativecommons.org/licenses/by-nc-sa/3.0/) &ensp;
[![PyPI Latest Release](https://img.shields.io/pypi/v/kinase-library.svg)](https://pypi.org/project/kinase-library/)

<hr/>

</div>

**The Kinase Library** is a comprehensive Python package for analyzing phosphoproteomics data, focusing on kinase-substrate relationships. It provides tools for kinase prediction, enrichment analysis, and visualization, enabling researchers to gain insights into kinase activities and signaling pathways from phosphoproteomics datasets.

## Features

* **Kinase Prediction**: Predict potential kinases responsible for phosphorylation sites using a built-in kinase-substrate prediction algorithm.
* **Enrichment Analysis**: Perform kinase enrichment analysis using binary enrichment or differential phosphorylation analysis.
* **Motif Enrichment Analysis (MEA)**: Identify kinases potentially regulated in your dataset using MEA with the GSEA algorithm.
* **Visualization**: Generate volcano plots, bubble maps, and other visualizations to interpret enrichment results.
* **Downstream Substrate Identification**: Explore putative downstream substrates of enriched kinases.

## Installation

You can install the package via pip:

```
pip install kinase-library
```

## Getting Started

The Kinase Library package offers several tools for analyzing kinase phosphorylation sites. Below are some basic examples to help you get started. Please refer to [`Notebooks`](https://github.com/TheKinaseLibrary/kinase-library/tree/master/src/notebooks/) for more comprehensive usage.

### Example: Identify kinases capable of phosphorylating a site using `Substrate`

```
import kinase_library as kl

# Create a Substrate object with a target sequence (example: p53 S33)
s = kl.Substrate('PSVEPPLsQETFSDL')  # Lowercase 's' indicates a phosphoserine

# Predict potential kinase interactions for the substrate
s.predict()
```

Here’s an example of the output you can expect from using the Substrate.predict() function.

<div style="overflow-x:auto;">

| Kinase  | Score   | Score Rank | Percentile | Percentile Rank |
| ------- | ------- | ---------- | ---------- | --------------- |
| ATM     | 5.0385  | 1          | 99.83      | 1               |
| SMG1    | 4.2377  | 2          | 99.77      | 2               |
| ATR     | 3.5045  | 4          | 99.69      | 3               |
| DNAPK   | 3.8172  | 3          | 99.21      | 4               |
| FAM20C  | 3.1716  | 5          | 95.23      | 5               |
| ...     | ...     | ...        | ...        | ...             |
| BRAF    | -4.4003 | 241        | 7.86       | 305             |
| AKT2    | -5.6530 | 283        | 6.79       | 306             |
| P70S6KB | -3.9915 | 221        | 6.64       | 307             |
| NEK3    | -8.2455 | 309        | 4.85       | 308             |
| P70S6K  | -7.2917 | 305        | 4.19       | 309             |

</div>

### Example: Identify kinases capable of phosphorylating a site for multiple sites using `PhosphoProteomics`

Assuming you have a CSV file called "pps_data.csv" containing the following list of phosphosites:

```
uniprot,protein,gene,description,position,residue,best_localization_prob,sequence window
Q15149,PLEC,PLEC,Plectin,113,T,1.000000,MVMPARRtPHVQAVQ
O43865,SAHH2,AHCYL1,S-adenosylhomocysteine hydrolase-like protein 1,29,S,0.911752,EDAEKysFMATVT
Q8WX93,PALLD,PALLD,Palladin,35,S,0.999997,PGLsAFLSQEEINKS
Q96NY7,CLIC6,CLIC6,Chloride intracellular channel protein 6,322,S,1.000000,AGESAGRsPG_____
Q02790,FKBP4,FKBP4,Peptidyl-prolyl cis-trans isomerase FKBP4,336,S,0.999938,PDRRLGKLKLQAFsAXXESCHCGGPSA
```

```
import kinase_library as kl
import pandas as pd

phosphosites_data = pd.read_csv('pps_data.csv')
pps = kl.PhosphoProteomics(phosphosites_data, seq_col='sequence window')
pps.predict(kin_type='ser_thr')
```

This is the expected output from using the PhosphoProteomics.predict() function.

<div style="overflow-x:auto;">

| uniprot | protein | gene   | description                                     | position | residue | best_localization_prob | sequence window             | phos_res | Sequence             | ... | YSK1_percentile | YSK1_percentile_rank | YSK4_score | YSK4_score_rank | YSK4_percentile | YSK4_percentile_rank | ZAK_score | ZAK_score_rank | ZAK_percentile | ZAK_percentile_rank |
| ------- | ------- | ------ | ----------------------------------------------- | -------- | ------- | ---------------------- | --------------------------- | -------- | -------------------- | --- | --------------- | -------------------- | ---------- | --------------- | --------------- | -------------------- | --------- | -------------- | -------------- | ------------------- |
| Q15149  | PLEC    | PLEC   | Plectin                                         | 113      | T       | 1.000000               | MVMPARRtPHVQAVQ             | t        | MVMPARRtPHVQAVQ      | ... | 80.44           | 130                  | -3.004     | 249             | 32.17           | 244                  | -1.210    | 159            | 80.90          | 128                 |
| O43865  | SAHH2   | AHCYL1 | S-adenosylhomocysteine hydrolase-like protein 1 | 29       | S       | 0.911752               | EDAEKysFMATVT               | s        | \_EDAEKYsFMATVT\_    | ... | 63.85           | 150                  | -1.431     | 125             | 71.22           | 108                  | -1.481    | 129            | 76.87          | 82                  |
| Q8WX93  | PALLD   | PALLD  | Palladin                                        | 35       | S       | 0.999997               | PGLsAFLSQEEINKS             | s        | PGLSAFLsQEEINKS      | ... | 11.73           | 250                  | -2.567     | 128             | 44.07           | 119                  | -4.899    | 228            | 6.80           | 291                 |
| Q96NY7  | CLIC6   | CLIC6  | Chloride intracellular channel protein 6        | 322      | S       | 1.000000               | AGESAGRsPG\_\_\_\_\_        | s        | AGESAGRsPG\_\_\_\_\_ | ... | 52.69           | 134                  | -3.300     | 213             | 24.37           | 284                  | -2.839    | 182            | 47.81          | 163                 |
| Q02790  | FKBP4   | FKBP4  | Peptidyl-prolyl cis-trans isomerase FKBP4       | 336      | S       | 0.999938               | PDRRLGKLKLQAFsAXXESCHCGGPSA | s        | KLKLQAFsAXXESCH      | ... | 46.82           | 216                  | -2.265     | 186             | 52.25           | 178                  | -3.020    | 240            | 43.29          | 233                 |

</div>

## Citations

Please cite the following papers when using this package:

**For the serine/threonine kinome:**
> Johnson, J. L., Yaron, T. M., Huntsman, E. M., Kerelsky, A., Song, J., Regev, A., ... & Cantley, L. C. (2023). **An atlas of substrate specificities for the human serine/threonine kinome**. _Nature_, 613(7945), 759-766. [https://doi.org/10.1074/mcp.TIR118.000943](https://doi.org/10.1038/s41586-022-05575-3)

**For the tyrosine kinome:**
> Yaron-Barir, T. M., Joughin, B. A., Huntsman, E. M., Kerelsky, A., Cizin, D. M., Cohen, B. M., ... & Johnson, J. L. (2024). **The intrinsic substrate specificity of the human tyrosine kinome**. _Nature_, 1-8. [https://doi.org/10.1038/s41586-024-07407-y](https://doi.org/10.1038/s41586-024-07407-y)

**If you are using the MEA tool, please also cite:**
> Fang, Z., Liu, X., & Peltz, G. (2023). **GSEApy: a comprehensive package for performing gene set enrichment analysis in Python**. _Bioinformatics_, 39(1), btac757. [https://doi.org/10.1093/bioinformatics/btac757](https://doi.org/10.1093/bioinformatics/btac757)

## License

This package is distributed under the Creative Commons License. See `LICENSE` for more information.


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "kinase-library",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<=3.13,>=3.10",
    "maintainer_email": null,
    "keywords": "kinase, phosphorylation, substrate, motif, substrate specificity, cell signaling, signaling, phosphoproteomics, kinase enrichment, signaling network, kinome, peptide library, phosphosite",
    "author": null,
    "author_email": "yaront <tmy2110@cumc.columbia.edu>, harinlee0803 <harin.lee@cellsignal.com>, sean-landry <sean.landry@cellsignal.com>",
    "download_url": "https://files.pythonhosted.org/packages/0b/04/044a132dedda06d5a11dfde3080367c4db2fd636d218a1b55c519b193533/kinase_library-1.0.3.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n    <picture>\n        <img src=\"https://i.imgur.com/Y6PmRsQ.jpeg\" alt=\"The Kinase Library\" width=\"50%\">\n    </picture>\n\n<hr/>\n\n# [Click here for The Kinase Library Web Tool](https://kinase-library.phosphosite.org)\n\n<picture>\n    <img src=\"https://i.imgur.com/sWUA4Rk.png\" alt=\"The Kinase Library QR Code\" width=\"20%\">\n</picture>\n\n[![Twitter Follow](https://img.shields.io/twitter/follow/KinaseLibrary?style=social)](https://twitter.com/KinaseLibrary) &ensp;\n[![License: CC BY-NC-SA 3.0](https://img.shields.io/badge/License-CC%20BY--NC--SA%203.0-lightgrey.svg)](https://creativecommons.org/licenses/by-nc-sa/3.0/) &ensp;\n[![PyPI Latest Release](https://img.shields.io/pypi/v/kinase-library.svg)](https://pypi.org/project/kinase-library/)\n\n<hr/>\n\n</div>\n\n**The Kinase Library** is a comprehensive Python package for analyzing phosphoproteomics data, focusing on kinase-substrate relationships. It provides tools for kinase prediction, enrichment analysis, and visualization, enabling researchers to gain insights into kinase activities and signaling pathways from phosphoproteomics datasets.\n\n## Features\n\n* **Kinase Prediction**: Predict potential kinases responsible for phosphorylation sites using a built-in kinase-substrate prediction algorithm.\n* **Enrichment Analysis**: Perform kinase enrichment analysis using binary enrichment or differential phosphorylation analysis.\n* **Motif Enrichment Analysis (MEA)**: Identify kinases potentially regulated in your dataset using MEA with the GSEA algorithm.\n* **Visualization**: Generate volcano plots, bubble maps, and other visualizations to interpret enrichment results.\n* **Downstream Substrate Identification**: Explore putative downstream substrates of enriched kinases.\n\n## Installation\n\nYou can install the package via pip:\n\n```\npip install kinase-library\n```\n\n## Getting Started\n\nThe Kinase Library package offers several tools for analyzing kinase phosphorylation sites. Below are some basic examples to help you get started. Please refer to [`Notebooks`](https://github.com/TheKinaseLibrary/kinase-library/tree/master/src/notebooks/) for more comprehensive usage.\n\n### Example: Identify kinases capable of phosphorylating a site using `Substrate`\n\n```\nimport kinase_library as kl\n\n# Create a Substrate object with a target sequence (example: p53 S33)\ns = kl.Substrate('PSVEPPLsQETFSDL')  # Lowercase 's' indicates a phosphoserine\n\n# Predict potential kinase interactions for the substrate\ns.predict()\n```\n\nHere\u2019s an example of the output you can expect from using the Substrate.predict() function.\n\n<div style=\"overflow-x:auto;\">\n\n| Kinase  | Score   | Score Rank | Percentile | Percentile Rank |\n| ------- | ------- | ---------- | ---------- | --------------- |\n| ATM     | 5.0385  | 1          | 99.83      | 1               |\n| SMG1    | 4.2377  | 2          | 99.77      | 2               |\n| ATR     | 3.5045  | 4          | 99.69      | 3               |\n| DNAPK   | 3.8172  | 3          | 99.21      | 4               |\n| FAM20C  | 3.1716  | 5          | 95.23      | 5               |\n| ...     | ...     | ...        | ...        | ...             |\n| BRAF    | -4.4003 | 241        | 7.86       | 305             |\n| AKT2    | -5.6530 | 283        | 6.79       | 306             |\n| P70S6KB | -3.9915 | 221        | 6.64       | 307             |\n| NEK3    | -8.2455 | 309        | 4.85       | 308             |\n| P70S6K  | -7.2917 | 305        | 4.19       | 309             |\n\n</div>\n\n### Example: Identify kinases capable of phosphorylating a site for multiple sites using `PhosphoProteomics`\n\nAssuming you have a CSV file called \"pps_data.csv\" containing the following list of phosphosites:\n\n```\nuniprot,protein,gene,description,position,residue,best_localization_prob,sequence window\nQ15149,PLEC,PLEC,Plectin,113,T,1.000000,MVMPARRtPHVQAVQ\nO43865,SAHH2,AHCYL1,S-adenosylhomocysteine hydrolase-like protein 1,29,S,0.911752,EDAEKysFMATVT\nQ8WX93,PALLD,PALLD,Palladin,35,S,0.999997,PGLsAFLSQEEINKS\nQ96NY7,CLIC6,CLIC6,Chloride intracellular channel protein 6,322,S,1.000000,AGESAGRsPG_____\nQ02790,FKBP4,FKBP4,Peptidyl-prolyl cis-trans isomerase FKBP4,336,S,0.999938,PDRRLGKLKLQAFsAXXESCHCGGPSA\n```\n\n```\nimport kinase_library as kl\nimport pandas as pd\n\nphosphosites_data = pd.read_csv('pps_data.csv')\npps = kl.PhosphoProteomics(phosphosites_data, seq_col='sequence window')\npps.predict(kin_type='ser_thr')\n```\n\nThis is the expected output from using the PhosphoProteomics.predict() function.\n\n<div style=\"overflow-x:auto;\">\n\n| uniprot | protein | gene   | description                                     | position | residue | best_localization_prob | sequence window             | phos_res | Sequence             | ... | YSK1_percentile | YSK1_percentile_rank | YSK4_score | YSK4_score_rank | YSK4_percentile | YSK4_percentile_rank | ZAK_score | ZAK_score_rank | ZAK_percentile | ZAK_percentile_rank |\n| ------- | ------- | ------ | ----------------------------------------------- | -------- | ------- | ---------------------- | --------------------------- | -------- | -------------------- | --- | --------------- | -------------------- | ---------- | --------------- | --------------- | -------------------- | --------- | -------------- | -------------- | ------------------- |\n| Q15149  | PLEC    | PLEC   | Plectin                                         | 113      | T       | 1.000000               | MVMPARRtPHVQAVQ             | t        | MVMPARRtPHVQAVQ      | ... | 80.44           | 130                  | -3.004     | 249             | 32.17           | 244                  | -1.210    | 159            | 80.90          | 128                 |\n| O43865  | SAHH2   | AHCYL1 | S-adenosylhomocysteine hydrolase-like protein 1 | 29       | S       | 0.911752               | EDAEKysFMATVT               | s        | \\_EDAEKYsFMATVT\\_    | ... | 63.85           | 150                  | -1.431     | 125             | 71.22           | 108                  | -1.481    | 129            | 76.87          | 82                  |\n| Q8WX93  | PALLD   | PALLD  | Palladin                                        | 35       | S       | 0.999997               | PGLsAFLSQEEINKS             | s        | PGLSAFLsQEEINKS      | ... | 11.73           | 250                  | -2.567     | 128             | 44.07           | 119                  | -4.899    | 228            | 6.80           | 291                 |\n| Q96NY7  | CLIC6   | CLIC6  | Chloride intracellular channel protein 6        | 322      | S       | 1.000000               | AGESAGRsPG\\_\\_\\_\\_\\_        | s        | AGESAGRsPG\\_\\_\\_\\_\\_ | ... | 52.69           | 134                  | -3.300     | 213             | 24.37           | 284                  | -2.839    | 182            | 47.81          | 163                 |\n| Q02790  | FKBP4   | FKBP4  | Peptidyl-prolyl cis-trans isomerase FKBP4       | 336      | S       | 0.999938               | PDRRLGKLKLQAFsAXXESCHCGGPSA | s        | KLKLQAFsAXXESCH      | ... | 46.82           | 216                  | -2.265     | 186             | 52.25           | 178                  | -3.020    | 240            | 43.29          | 233                 |\n\n</div>\n\n## Citations\n\nPlease cite the following papers when using this package:\n\n**For the serine/threonine kinome:**\n> Johnson, J. L., Yaron, T. M., Huntsman, E. M., Kerelsky, A., Song, J., Regev, A., ... & Cantley, L. C. (2023). **An atlas of substrate specificities for the human serine/threonine kinome**. _Nature_, 613(7945), 759-766. [https://doi.org/10.1074/mcp.TIR118.000943](https://doi.org/10.1038/s41586-022-05575-3)\n\n**For the tyrosine kinome:**\n> Yaron-Barir, T. M., Joughin, B. A., Huntsman, E. M., Kerelsky, A., Cizin, D. M., Cohen, B. M., ... & Johnson, J. L. (2024). **The intrinsic substrate specificity of the human tyrosine kinome**. _Nature_, 1-8. [https://doi.org/10.1038/s41586-024-07407-y](https://doi.org/10.1038/s41586-024-07407-y)\n\n**If you are using the MEA tool, please also cite:**\n> Fang, Z., Liu, X., & Peltz, G. (2023). **GSEApy: a comprehensive package for performing gene set enrichment analysis in Python**. _Bioinformatics_, 39(1), btac757. [https://doi.org/10.1093/bioinformatics/btac757](https://doi.org/10.1093/bioinformatics/btac757)\n\n## License\n\nThis package is distributed under the Creative Commons License. See `LICENSE` for more information.\n\n",
    "bugtrack_url": null,
    "license": "Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported",
    "summary": "The Kinase Library Project: a Global Atlas of the Human Protein Kinome",
    "version": "1.0.3",
    "project_urls": {
        "Documentation": "https://kinase-library.readthedocs.io",
        "Homepage": "https://kinase-library.phosphosite.org",
        "Source": "https://github.com/TheKinaseLibrary/kinase-library"
    },
    "split_keywords": [
        "kinase",
        " phosphorylation",
        " substrate",
        " motif",
        " substrate specificity",
        " cell signaling",
        " signaling",
        " phosphoproteomics",
        " kinase enrichment",
        " signaling network",
        " kinome",
        " peptide library",
        " phosphosite"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f5759cbb80f19fc563d4cd32be165c9abef4958ca5d7c83217da922504855178",
                "md5": "4fd129de50b8a2f3004cdbfd0cf127c1",
                "sha256": "66ab1a5aa0953e62b1ecb6eb1721bd7e8b42139c7a13eaba852a2a7ef44cbd13"
            },
            "downloads": -1,
            "filename": "kinase_library-1.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "4fd129de50b8a2f3004cdbfd0cf127c1",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<=3.13,>=3.10",
            "size": 69851565,
            "upload_time": "2024-12-13T16:19:22",
            "upload_time_iso_8601": "2024-12-13T16:19:22.230967Z",
            "url": "https://files.pythonhosted.org/packages/f5/75/9cbb80f19fc563d4cd32be165c9abef4958ca5d7c83217da922504855178/kinase_library-1.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0b04044a132dedda06d5a11dfde3080367c4db2fd636d218a1b55c519b193533",
                "md5": "97da825b0da28c634f79459758138ea6",
                "sha256": "db674765d085c0d7ad1c7cab756a9780327aad56808b6d59e67aabecd9fe5967"
            },
            "downloads": -1,
            "filename": "kinase_library-1.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "97da825b0da28c634f79459758138ea6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<=3.13,>=3.10",
            "size": 69370720,
            "upload_time": "2024-12-13T16:19:35",
            "upload_time_iso_8601": "2024-12-13T16:19:35.724454Z",
            "url": "https://files.pythonhosted.org/packages/0b/04/044a132dedda06d5a11dfde3080367c4db2fd636d218a1b55c519b193533/kinase_library-1.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-13 16:19:35",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "TheKinaseLibrary",
    "github_project": "kinase-library",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "kinase-library"
}
        
Elapsed time: 0.37018s