Name | klp-commons JSON |
Version | 0.0.69 JSON |
download | |
home_page | |
Summary | Modulo Commons del ecosistema Kloop. Contiene los modulos de uso común para los paquetes |
upload_time | 2023-07-04 18:26:05 |
maintainer | |
docs_url | None |
author | |
requires_python | |
license | |
keywords | |
VCS | |
bugtrack_url | |
requirements | No requirements were recorded. |
Travis-CI | No Travis. |
coveralls test coverage | No coveralls. |
## Commons Este repositorio de código se crea para implementar la microservicio `Commons` de la infraestructura de Klopp. A continuación se proporciona una descripción de la estructura de los archivos y directorios más importantes: ## Template - `setup.py` - [`Notebook`] - `test` - `requirements.txt` - Blibliotecas necesarias para reproducir el entorno ## Estructura del proyecto ``` ├── LICENSE ├── Makefile <- Makefile with commands like `make data` or `make train` ├── README.md <- The top-level README for developers using this project. ├── docs <- A default Sphinx project; see sphinx-doc.org for details ├── models <- Trained and serialized models, model predictions, or model summaries ├── experiments │ ├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering), │ │ └── mlflow <- Metretrics and model management │ ├── references <- Data dictionaries, manuals, and all other explanatory materials. │ ├── processed <- The final, canonical data sets for modeling. │ └── data │ ├── external <- Data from third party sources. │ ├── interim <- Intermediate data that has been transformed. │ ├── processed <- The final, canonical data sets for modeling. │ └── raw <- The original, immutable data dump. ├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g. │ generated with `pip freeze > requirements.txt` ├── setup.py <- Run this project ├── pipeline <- Source pipeline for load, preprocessing, training and test │ ├── __init__.py <- Makes src a Python module │ ├── data <- Scripts to download or generate data │ │ └── make_dataset.py │ ├── features <- Scripts to turn raw data into features for modeling │ │ └── build_features.py │ ├── models <- Scripts to train models and then use trained models to make │ │ │ predictions │ │ ├── predict_model.py │ │ └── train_model.py │ └── visualization <- Scripts to create exploratory and results oriented visualizations │ └── visualize.py ├── categorization <- Source code for use in this project. │ ├── __init__.py <- Makes src a Python module │ ├── categorization.py <- class and method run() for app running │ ├── classifier.py <- Class for model ML │ ├── consumer.py <- class for Kafka consumer │ ├── controller_dynamo_db.py <- class for management CRUD │ ├── controller_ml_fow.py <- Class for management models │ ├── controller_posgrest_db.py <- class for managemen CRUD │ ├── producer.py <- class for Kafka producer │ ├── nicknames.py <- Class │ ├── merchantnames.py <- class │ └── logs <- folder for logs files └── tox.ini <- tox file with settings for running tox;(automate and standardize testing) ``` ## Reproducir proyectos ## Software necesario El proyecto se desarrollo con los siguientes requisitos a primer nivel : Python 3.10.4 Se recomienda a nivel de desarrollo utilizar un entorno virtual administrado por conda. `conda create -n categorization python=3.10.4` Use sólo pip como gestor de paquetería después de crear en entorno virtual con conda. Los requisitos de las bibliotecas necesarias se pueden pasar a pip a través del archivo `requiremets.txt` pip install -r requirements.txt Ver pagína de [python](https://requirements-txt.readthedocs.io/en/latest/#:~:text=txt%20installing%20them%20using%20pip.&text=The%20installation%20process%20include%20only,That's%20it.&text=Customize%20it%20the%20way%20you,allow%20or%20disallow%20automated%20requirements) Otra opcíon es utilizar un docker oficial de python con la versión cómo 3.10 como mínima. Esta es sólo si utilizas Linux o Windows como sistema operativo, existe problemas de compatibilidad para MacBooks M1 [Docker Hub de Python](https://hub.docker.com/_/python) - Para el entorno local se utiliza [Jupyer Notebook] como entorno de experimentación - Para administrar los modelos de ML se utiliza [MLFlow]() con Posgrestdb - Como gestor de bases de datos relacional se utiliza PosgrestDB - Para almacenar información no estructurada se utiliza DynamoDB - Para versionamiento de los dataset se utiliza [DVC] - Para autoformatting se utilizan los paquetes [`Back`](), [Flake8]() y [autopep8] () - Para pruebas unitarias se utiliza el paquete estándar de python `unittest`
{ "_id": null, "home_page": "", "name": "klp-commons", "maintainer": "", "docs_url": null, "requires_python": "", "maintainer_email": "", "keywords": "", "author": "", "author_email": "Omar Santa Cruz <omar.castellanos@kolpp.mx>", "download_url": "https://files.pythonhosted.org/packages/3d/af/a42bb293948c482f4ceb2eee99cda0a9e01dd44190c0232422fc148236e0/klp_commons-0.0.69.tar.gz", "platform": null, "description": "## Commons \n\nEste repositorio de c\u00f3digo se crea para implementar la microservicio `Commons` de la infraestructura de Klopp.\n\nA continuaci\u00f3n se proporciona una descripci\u00f3n de la estructura de los archivos y directorios m\u00e1s importantes:\n\n## Template\n\n- `setup.py`\n- [`Notebook`]\n- `test`\n- `requirements.txt`\n - Blibliotecas necesarias para reproducir el entorno\n\n## Estructura del proyecto\n\n```\n\u251c\u2500\u2500 LICENSE\n\u251c\u2500\u2500 Makefile <- Makefile with commands like `make data` or `make train`\n\u251c\u2500\u2500 README.md <- The top-level README for developers using this project.\n\u251c\u2500\u2500 docs <- A default Sphinx project; see sphinx-doc.org for details\n\u251c\u2500\u2500 models <- Trained and serialized models, model predictions, or model summaries\n\u251c\u2500\u2500 experiments \n\u2502 \u251c\u2500\u2500 notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),\n\u2502 \u2502 \u2514\u2500\u2500 mlflow <- Metretrics and model management \n\u2502 \u251c\u2500\u2500 references <- Data dictionaries, manuals, and all other explanatory materials.\n\u2502 \u251c\u2500\u2500 processed <- The final, canonical data sets for modeling. \n\u2502 \u2514\u2500\u2500 data \n\u2502 \u251c\u2500\u2500 external <- Data from third party sources.\n\u2502 \u251c\u2500\u2500 interim <- Intermediate data that has been transformed.\n\u2502 \u251c\u2500\u2500 processed <- The final, canonical data sets for modeling.\n\u2502 \u2514\u2500\u2500 raw <- The original, immutable data dump.\n\u251c\u2500\u2500 requirements.txt <- The requirements file for reproducing the analysis environment, e.g.\n\u2502 generated with `pip freeze > requirements.txt`\n\u251c\u2500\u2500 setup.py <- Run this project \n\u251c\u2500\u2500 pipeline <- Source pipeline for load, preprocessing, training and test \n\u2502 \u251c\u2500\u2500 __init__.py <- Makes src a Python module\n\u2502 \u251c\u2500\u2500 data <- Scripts to download or generate data\n\u2502 \u2502 \u2514\u2500\u2500 make_dataset.py\n\u2502 \u251c\u2500\u2500 features <- Scripts to turn raw data into features for modeling\n\u2502 \u2502 \u2514\u2500\u2500 build_features.py\n\u2502 \u251c\u2500\u2500 models <- Scripts to train models and then use trained models to make\n\u2502 \u2502 \u2502 predictions\n\u2502 \u2502 \u251c\u2500\u2500 predict_model.py\n\u2502 \u2502 \u2514\u2500\u2500 train_model.py\n\u2502 \u2514\u2500\u2500 visualization <- Scripts to create exploratory and results oriented visualizations\n\u2502 \u2514\u2500\u2500 visualize.py\n\u251c\u2500\u2500 categorization <- Source code for use in this project.\n\u2502 \u251c\u2500\u2500 __init__.py <- Makes src a Python module\n\u2502 \u251c\u2500\u2500 categorization.py <- class and method run() for app running \n\u2502 \u251c\u2500\u2500 classifier.py <- Class for model ML\n\u2502 \u251c\u2500\u2500 consumer.py <- class for Kafka consumer \n\u2502 \u251c\u2500\u2500 controller_dynamo_db.py <- class for management CRUD \n\u2502 \u251c\u2500\u2500 controller_ml_fow.py <- Class for management models\n\u2502 \u251c\u2500\u2500 controller_posgrest_db.py <- class for managemen CRUD \n\u2502 \u251c\u2500\u2500 producer.py <- class for Kafka producer\n\u2502 \u251c\u2500\u2500 nicknames.py <- Class \n\u2502 \u251c\u2500\u2500 merchantnames.py <- class \n\u2502 \u2514\u2500\u2500 logs <- folder for logs files \n\u2514\u2500\u2500 tox.ini <- tox file with settings for running tox;(automate and standardize testing)\n```\n\n\n## Reproducir proyectos \n\n## Software necesario\n\nEl proyecto se desarrollo con los siguientes requisitos a primer nivel :\n\nPython 3.10.4\n\nSe recomienda a nivel de desarrollo utilizar un entorno virtual administrado por conda.\n\n`conda create -n categorization python=3.10.4` \n\nUse s\u00f3lo pip como gestor de paqueter\u00eda despu\u00e9s de crear en entorno virtual con conda.\nLos requisitos de las bibliotecas necesarias se pueden pasar a pip a trav\u00e9s del archivo `requiremets.txt`\n\npip install -r requirements.txt\n\nVer pag\u00edna de [python](https://requirements-txt.readthedocs.io/en/latest/#:~:text=txt%20installing%20them%20using%20pip.&text=The%20installation%20process%20include%20only,That's%20it.&text=Customize%20it%20the%20way%20you,allow%20or%20disallow%20automated%20requirements)\n\n\nOtra opc\u00edon es utilizar un docker oficial de python con la versi\u00f3n c\u00f3mo 3.10 como m\u00ednima. Esta es s\u00f3lo si utilizas Linux o Windows como sistema operativo, existe problemas de compatibilidad para MacBooks M1\n\n\n[Docker Hub de Python](https://hub.docker.com/_/python)\n\n- Para el entorno local se utiliza [Jupyer Notebook] como entorno de experimentaci\u00f3n\n- Para administrar los modelos de ML se utiliza [MLFlow]() con Posgrestdb\n- Como gestor de bases de datos relacional se utiliza PosgrestDB\n- Para almacenar informaci\u00f3n no estructurada se utiliza DynamoDB\n- Para versionamiento de los dataset se utiliza [DVC]\n- Para autoformatting se utilizan los paquetes [`Back`](), [Flake8]() y [autopep8] () \n- Para pruebas unitarias se utiliza el paquete est\u00e1ndar de python `unittest` \n", "bugtrack_url": null, "license": "", "summary": "Modulo Commons del ecosistema Kloop. Contiene los modulos de uso com\u00fan para los paquetes", "version": "0.0.69", "project_urls": { "Home": "https://gitlab.com/klopp1/backend/microservices/commons" }, "split_keywords": [], "urls": [ { "comment_text": "", "digests": { "blake2b_256": "f531af4accd29aa2ef5c339e642d81702f3b7007892a9658a8f5946813cc47b6", "md5": "3345863afa4cbe172d309b8f90f174ab", "sha256": "bfe55e6776cd1a40f4050b91fcb93a6e1b2b5f33fb64bcda0ffb665d3cf43f0e" }, "downloads": -1, "filename": "klp_commons-0.0.69-py2.py3-none-any.whl", "has_sig": false, "md5_digest": "3345863afa4cbe172d309b8f90f174ab", "packagetype": "bdist_wheel", "python_version": "py2.py3", "requires_python": null, "size": 437138, "upload_time": "2023-07-04T18:26:03", "upload_time_iso_8601": "2023-07-04T18:26:03.335454Z", "url": "https://files.pythonhosted.org/packages/f5/31/af4accd29aa2ef5c339e642d81702f3b7007892a9658a8f5946813cc47b6/klp_commons-0.0.69-py2.py3-none-any.whl", "yanked": false, "yanked_reason": null }, { "comment_text": "", "digests": { "blake2b_256": "3dafa42bb293948c482f4ceb2eee99cda0a9e01dd44190c0232422fc148236e0", "md5": "793a81b6f85f624899aa70b18b3c560c", "sha256": "33ce0eb7f5e07ae9a668b482f93c18d70522f0e3cb789fefc9ead87d03a24710" }, "downloads": -1, "filename": "klp_commons-0.0.69.tar.gz", "has_sig": false, "md5_digest": "793a81b6f85f624899aa70b18b3c560c", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 413505, "upload_time": "2023-07-04T18:26:05", "upload_time_iso_8601": "2023-07-04T18:26:05.971632Z", "url": "https://files.pythonhosted.org/packages/3d/af/a42bb293948c482f4ceb2eee99cda0a9e01dd44190c0232422fc148236e0/klp_commons-0.0.69.tar.gz", "yanked": false, "yanked_reason": null } ], "upload_time": "2023-07-04 18:26:05", "github": false, "gitlab": true, "bitbucket": false, "codeberg": false, "gitlab_user": "klopp1", "gitlab_project": "backend", "lcname": "klp-commons" }