km-walk


Namekm-walk JSON
Version 2.2.1 PyPI version JSON
download
home_pagehttps://github.com/iric-soft/km
SummaryA software for RNA-seq investigation using k-mer decomposition
upload_time2023-08-01 21:04:11
maintainer
docs_urlNone
authorAlbert Feghaly, Eric Audemard, Patrick Gendron, Sebastien Lemieux
requires_python>=3.6
licenseMIT
keywords k-mer rna-seq variant sequencing
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage
            
===================================================================
km : a software for RNA-seq investigation using k-mer decomposition
===================================================================

+-------------+-----------+
| |pyversion| | |codecov| |
+-------------+-----------+

.. |pyversion| image:: https://img.shields.io/badge/python-3.6%20%7C%203.7%20%7C%203.8%20%7C%203.9%20%7C%203.10%20%7C%203.11-blue.svg
   :target: https://pypi.org/project/km-walk/

.. |codecov| image:: https://codecov.io/gh/iric-soft/km/branch/master/graph/badge.svg
   :target: https://codecov.io/gh/iric-soft/km/

.. |travis| image:: https://travis-ci.org/iric-soft/km.svg?branch=master
   :target: https://travis-ci.org/iric-soft/km

-------------
Introduction:
-------------

This tool was developed to identify and quantify the occurence of single
nucleotide variants, insertions, deletions and duplications in RNA-seq data.  Contrary to most tools that try to report all variants in a complete genome, here we instead propose to focus the analysis on small regions of interest.

Given a reference sequence (typically a few hundred base pairs) around a
known or suspected mutation in a gene of interest, all possible sequences
that can be be created between the two end k-mers according to the
sequenced reads will be reported. A ratio of variant allele vs WT will be
computed for each possible sequence constructed.

-------
Citing:
-------
* Targeted variant detection using unaligned RNA-Seq reads. Life science Alliance 2019 Aug 19;2(4); doi: https://doi.org/10.26508/lsa.201900336
* Target variant detection in leukemia using unaligned RNA-Seq reads. bioRxiv 295808; doi: https://doi.org/10.1101/295808

--------
Install:
--------

Recommended method - using pip:
-------------------------------

.. code:: shell

  python3 -m venv $HOME/.virtualenvs/km
  source $HOME/.virtualenvs/km/bin/activate
  pip install --upgrade pip setuptools wheel
  pip install km-walk

Alternative method - easy install script:
-----------------------------------------

`easy_install.sh`_ will install jellyfish with python binding, km in a virtual
environement, and test it. Without modification, all the code source will be
downloaded in your $HOME/software directory and all executable will be available
in the virtual environement directory: $HOME/.virtualenvs/km.

Requirements:
*************
* Python 3.6.0 or later with `pip`_ installed.

.. _pip: https://pip.pypa.io/en/stable/installing/

Usage:
******

* Copy/paste each line in a terminal.
* The virtual environment needs to be loaded each time you open a new terminal, with this command:

.. code:: shell

  $ source $HOME/.virtualenvs/km/bin/activate

Test:
*****

* 4bp insertion in NPM1

.. code:: shell

  $ cd [your_km_folder]
  $ km find_mutation ./data/catalog/GRCh38/NPM1_4ins_exons_10-11utr.fa ./data/jf/02H025_NPM1.jf | km find_report -t ./data/catalog/GRCh38/NPM1_4ins_exons_10-11utr.fa
  Sample	Region	Location	Type	Removed	Added	Abnormal	Normal	Ratio	Min_coverage	Exclu_min_cov	Variant	Target	InfoVariant_sequence	Reference_sequence
  ./data/jf/02H025_NPM1.jf	chr5:171410540-171410543	chr5:171410544	ITD	0	4 | 4	2870.6	3055.2	0.484	2428		/TCTG	NPM1_4ins_exons_10-11utr	vs_ref	AATTGCTTCCGGATGACTGACCAAGAGGCTATTCAAGATCTCTGTCTGGCAGTGGAGGAAGTCTCTTTAAGAAAATAGTTTAAA	AATTGCTTCCGGATGACTGACCAAGAGGCTATTCAAGATCTCTGGCAGTGGAGGAAGTCTCTTTAAGAAAATAGTTTAAA
  ./data/jf/02H025_NPM1.jf		-	Reference	0	0	0.0	2379.0	1.000	2379		-	NPM1_4ins_exons_10-11utr	vs_ref
  # To display kmer coverage
  $ km find_mutation ./data/catalog/GRCh38/NPM1_4ins_exons_10-11utr.fa ./data/jf/02H025_NPM1.jf -g

* ITD of 75 bp

.. code:: shell

  $ cd [your_km_folder]
  $ km find_mutation ./data/catalog/GRCh38/FLT3-ITD_exons_13-15.fa ./data/jf/03H116_ITD.jf | km find_report -t ./data/catalog/GRCh38/FLT3-ITD_exons_13-15.fa
  Sample	Region	Location	Type	Removed	Added	Abnormal	Normal	Ratio	Min_coverage	Exclu_min_cov	Variant	Target	Info	Variant_sequence	Reference_sequence
  ./data/jf/03H116_ITD.jf		-	Reference	0	0	0.0	443.0	1.000	912		-	FLT3-ITD_exons_13-15	vs_ref
  ./data/jf/03H116_ITD.jf	chr13:28034105-28034179	chr13:28034180	ITD	0	75 | 75	417.6	1096.7	0.276	443		/AACTCCCATTTGAGATCATATTCATATTCTCTGAAATCAACGTAGAAGTACTCATTATCTGAGGAGCCGGTCACC	FLT3-ITD_exons_13-15	vs_ref	CTTTCAGCATTTTGACGGCAACCTGGATTGAGACTCCTGTTTTGCTAATTCCATAAGCTGTTGCGTTCATCACTTTTCCAAAAGCACCTGATCCTAGTACCTTCCCAAACTCTAAATTTTCTCTTGGAAACTCCCATTTGAGATCATATTCATATTCTCTGAAATCAACGTAGAAGTACTCATTATCTGAGGAGCCGGTCACCAACTCCCATTTGAGATCATATTCATATTCTCTGAAATCAACGTAGAAGTACTCATTATCTGAGGAGCCGGTCACCTGTACCATCTGTAGCTGGCTTTCATACCTAAATTGCTTTTTGTACTTGTGACAAATTAGCAGGGTTAAAACGACAATGAAGAGGAGACAAACACCAATTGTTGCATAGAATGAGATGTTGTCTTGGATGAAAGGGAAGGGGC	CTTTCAGCATTTTGACGGCAACCTGGATTGAGACTCCTGTTTTGCTAATTCCATAAGCTGTTGCGTTCATCACTTTTCCAAAAGCACCTGATCCTAGTACCTTCCCAAACTCTAAATTTTCTCTTGGAAACTCCCATTTGAGATCATATTCATATTCTCTGAAATCAACGTAGAAGTACTCATTATCTGAGGAGCCGGTCACCTGTACCATCTGTAGCTGGCTTTCATACCTAAATTGCTTTTTGTACTTGTGACAAATTAGCAGGGTTAAAACGACAATGAAGAGGAGACAAACACCAATTGTTGCATAGAATGAGATGTTGTCTTGGATGAAAGGGAAGGGGC

.. _easy_install.sh: https://github.com/iric-soft/km/blob/master/easy_install.sh

Without install:
----------------
km can be executed directly from source code.

Requirements:
*************
* Python 3.6.0 or later
* pyJellyfish python module or Jellyfish 2.2 or later **with** Python `bindings`_.

Usage:
******

.. code:: shell

  $ cd [your_km_folder]
  $ python -m km find_mutation ./data/catalog/GRCh38/NPM1_4ins_exons_10-11utr.fa ./data/jf/02H025_NPM1.jf | km find_report -t ./data/catalog/GRCh38/NPM1_4ins_exons_10-11utr.fa

.. _bindings: https://github.com/gmarcais/Jellyfish#binding-to-script-languages

----------------------------
Design your target sequence:
----------------------------

* km is designed to make targeted analysis based on **target sequences**. These target sequences **need to be designed** and given to km as input.
* A target sequence is a nucleotide sequence saved in a fasta file. Some target sequences are provided in `catalog <https://github.com/iric-soft/km/tree/master/km/data/catalog>`_.
* To fit your specific needs, you will have to create your own target sequences.
* On generic cases, you can follow some good practices described below:

.. image:: https://github.com/iric-soft/km/blob/master/data/figure/doc_target_sequence.png

* A web portal is available to assist you in the creation of your target sequences (for cases 1 and 2).

  - km-target: https://bioinfo.iric.ca/km-target/

* You could also extract nucleotide sequences from genome using severals methods, two of them are discribe below:

  - Using `samtools <http://www.htslib.org/doc/samtools.html>`_: samtools faidx chr2:25234341-25234405 GRCh38/genome.fa
  - Using get DNA from `ucsc <https://genome.ucsc.edu/cgi-bin/hgc?hgsid=730614743_K2u5W9UIMXrPzrUlC5KaXmWjzf4R&o=25234340&g=getDna&i=mixed&c=chr2&l=25234340&r=25234405&db=hg38&hgsid=730614743_K2u5W9UIMXrPzrUlC5KaXmWjzf4R>`_.


-------------
Display help:
-------------

.. code:: shell

  $ km -h
    usage: PROG [-h] {find_mutation,find_report,linear_kmin,min_cov} ...

    positional arguments:
      {find_mutation,find_report,linear_kmin,min_cov}
                            sub-command help
        find_mutation       Identify and quantify mutations from a target sequence
                            and a k-mer database.
        find_report         Parse find_mutation output to reformat it in tabulated
                            file more user friendly.
        linear_kmin         Find min k length to decompose a target sequence in a
                            linear graph.
        min_cov             Compute coverage of target sequences.

    optional arguments:
      -h, --help            show this help message and exit


--------------------
km's tools overview:
--------------------

For more detailed documentation click `here <https://github.com/iric-soft/km/tree/master/km/tools>`_.

find_mutation:
--------------

This is the main tool of km, to identify and quantify mutations from
a target sequence and a k-mer jellyfish database.

.. code:: shell

  $ km find_mutation -h
  $ km find_mutation [your_fasta_targetSeq] [your_jellyfish_count_table]
  $ km find_mutation [your_catalog_directory] [your_jellyfish_count_table]

find_report:
------------

This tool parse find_mutation output to reformat it in more user friendly
tabulated file.

.. code:: shell

  $ km find_report -h
  $ km find_report -t [your_fasta_targetSeq] [find_mutation_output]
  $ km find_mutation [your_fasta_targetSeq] [your_jellyfish_count_table] | km find_report -t [your_fasta_targetSeq]

min_cov:
--------

This tools display some k-mer's coverage stats of a target sequence and a list of jellyfish database.

.. code:: shell

  $ km min_cov -h
  $ km min_cov [your_fasta_targetSeq] [[your_jellyfish_count_table]...]

linear_kmin:
------------

Length of k-mers is a central parameter:

* To produce a linear directed graph from the target sequence.
* To avoid false-positive. find_mutation shouldn't be use on jellyfish count table build with k<21 bp (we recommand k=31 bp, by default)

linear_kmin tool is design to give you the minimun k length to allow a
decomposition of a target sequence in a linear graph.

.. code:: shell

  $ km linear_kmin -h
  $ km linear_kmin [your_catalog_directory]

-------------------------------------------------
Runing km on a real sample from downloaded fastq:
-------------------------------------------------
In the `example`_ folder you can find a script to help you to
run a km analysis on one Leucegene sample.

  .. _example: https://github.com/iric-soft/km/tree/master/example

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/iric-soft/km",
    "name": "km-walk",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "k-mer RNA-seq variant sequencing",
    "author": "Albert Feghaly, Eric Audemard, Patrick Gendron, Sebastien Lemieux",
    "author_email": "bioinformatique@iric.ca",
    "download_url": "https://files.pythonhosted.org/packages/80/a0/b89ed2a3f9186e2ff4cec1524a3e990ac7c3a77f3781663b2060bbed6f8f/km-walk-2.2.1.tar.gz",
    "platform": null,
    "description": "\n===================================================================\nkm : a software for RNA-seq investigation using k-mer decomposition\n===================================================================\n\n+-------------+-----------+\n| |pyversion| | |codecov| |\n+-------------+-----------+\n\n.. |pyversion| image:: https://img.shields.io/badge/python-3.6%20%7C%203.7%20%7C%203.8%20%7C%203.9%20%7C%203.10%20%7C%203.11-blue.svg\n   :target: https://pypi.org/project/km-walk/\n\n.. |codecov| image:: https://codecov.io/gh/iric-soft/km/branch/master/graph/badge.svg\n   :target: https://codecov.io/gh/iric-soft/km/\n\n.. |travis| image:: https://travis-ci.org/iric-soft/km.svg?branch=master\n   :target: https://travis-ci.org/iric-soft/km\n\n-------------\nIntroduction:\n-------------\n\nThis tool was developed to identify and quantify the occurence of single\nnucleotide variants, insertions, deletions and duplications in RNA-seq data.  Contrary to most tools that try to report all variants in a complete genome, here we instead propose to focus the analysis on small regions of interest.\n\nGiven a reference sequence (typically a few hundred base pairs) around a\nknown or suspected mutation in a gene of interest, all possible sequences\nthat can be be created between the two end k-mers according to the\nsequenced reads will be reported. A ratio of variant allele vs WT will be\ncomputed for each possible sequence constructed.\n\n-------\nCiting:\n-------\n* Targeted variant detection using unaligned RNA-Seq reads. Life science Alliance 2019 Aug 19;2(4); doi: https://doi.org/10.26508/lsa.201900336\n* Target variant detection in leukemia using unaligned RNA-Seq reads. bioRxiv 295808; doi: https://doi.org/10.1101/295808\n\n--------\nInstall:\n--------\n\nRecommended method - using pip:\n-------------------------------\n\n.. code:: shell\n\n  python3 -m venv $HOME/.virtualenvs/km\n  source $HOME/.virtualenvs/km/bin/activate\n  pip install --upgrade pip setuptools wheel\n  pip install km-walk\n\nAlternative method - easy install script:\n-----------------------------------------\n\n`easy_install.sh`_ will install jellyfish with python binding, km in a virtual\nenvironement, and test it. Without modification, all the code source will be\ndownloaded in your $HOME/software directory and all executable will be available\nin the virtual environement directory: $HOME/.virtualenvs/km.\n\nRequirements:\n*************\n* Python 3.6.0 or later with `pip`_ installed.\n\n.. _pip: https://pip.pypa.io/en/stable/installing/\n\nUsage:\n******\n\n* Copy/paste each line in a terminal.\n* The virtual environment needs to be loaded each time you open a new terminal, with this command:\n\n.. code:: shell\n\n  $ source $HOME/.virtualenvs/km/bin/activate\n\nTest:\n*****\n\n* 4bp insertion in NPM1\n\n.. code:: shell\n\n  $ cd [your_km_folder]\n  $ km find_mutation ./data/catalog/GRCh38/NPM1_4ins_exons_10-11utr.fa ./data/jf/02H025_NPM1.jf | km find_report -t ./data/catalog/GRCh38/NPM1_4ins_exons_10-11utr.fa\n  Sample\tRegion\tLocation\tType\tRemoved\tAdded\tAbnormal\tNormal\tRatio\tMin_coverage\tExclu_min_cov\tVariant\tTarget\tInfoVariant_sequence\tReference_sequence\n  ./data/jf/02H025_NPM1.jf\tchr5:171410540-171410543\tchr5:171410544\tITD\t0\t4 | 4\t2870.6\t3055.2\t0.484\t2428\t\t/TCTG\tNPM1_4ins_exons_10-11utr\tvs_ref\tAATTGCTTCCGGATGACTGACCAAGAGGCTATTCAAGATCTCTGTCTGGCAGTGGAGGAAGTCTCTTTAAGAAAATAGTTTAAA\tAATTGCTTCCGGATGACTGACCAAGAGGCTATTCAAGATCTCTGGCAGTGGAGGAAGTCTCTTTAAGAAAATAGTTTAAA\n  ./data/jf/02H025_NPM1.jf\t\t-\tReference\t0\t0\t0.0\t2379.0\t1.000\t2379\t\t-\tNPM1_4ins_exons_10-11utr\tvs_ref\n  # To display kmer coverage\n  $ km find_mutation ./data/catalog/GRCh38/NPM1_4ins_exons_10-11utr.fa ./data/jf/02H025_NPM1.jf -g\n\n* ITD of 75 bp\n\n.. code:: shell\n\n  $ cd [your_km_folder]\n  $ km find_mutation ./data/catalog/GRCh38/FLT3-ITD_exons_13-15.fa ./data/jf/03H116_ITD.jf | km find_report -t ./data/catalog/GRCh38/FLT3-ITD_exons_13-15.fa\n  Sample\tRegion\tLocation\tType\tRemoved\tAdded\tAbnormal\tNormal\tRatio\tMin_coverage\tExclu_min_cov\tVariant\tTarget\tInfo\tVariant_sequence\tReference_sequence\n  ./data/jf/03H116_ITD.jf\t\t-\tReference\t0\t0\t0.0\t443.0\t1.000\t912\t\t-\tFLT3-ITD_exons_13-15\tvs_ref\n  ./data/jf/03H116_ITD.jf\tchr13:28034105-28034179\tchr13:28034180\tITD\t0\t75 | 75\t417.6\t1096.7\t0.276\t443\t\t/AACTCCCATTTGAGATCATATTCATATTCTCTGAAATCAACGTAGAAGTACTCATTATCTGAGGAGCCGGTCACC\tFLT3-ITD_exons_13-15\tvs_ref\tCTTTCAGCATTTTGACGGCAACCTGGATTGAGACTCCTGTTTTGCTAATTCCATAAGCTGTTGCGTTCATCACTTTTCCAAAAGCACCTGATCCTAGTACCTTCCCAAACTCTAAATTTTCTCTTGGAAACTCCCATTTGAGATCATATTCATATTCTCTGAAATCAACGTAGAAGTACTCATTATCTGAGGAGCCGGTCACCAACTCCCATTTGAGATCATATTCATATTCTCTGAAATCAACGTAGAAGTACTCATTATCTGAGGAGCCGGTCACCTGTACCATCTGTAGCTGGCTTTCATACCTAAATTGCTTTTTGTACTTGTGACAAATTAGCAGGGTTAAAACGACAATGAAGAGGAGACAAACACCAATTGTTGCATAGAATGAGATGTTGTCTTGGATGAAAGGGAAGGGGC\tCTTTCAGCATTTTGACGGCAACCTGGATTGAGACTCCTGTTTTGCTAATTCCATAAGCTGTTGCGTTCATCACTTTTCCAAAAGCACCTGATCCTAGTACCTTCCCAAACTCTAAATTTTCTCTTGGAAACTCCCATTTGAGATCATATTCATATTCTCTGAAATCAACGTAGAAGTACTCATTATCTGAGGAGCCGGTCACCTGTACCATCTGTAGCTGGCTTTCATACCTAAATTGCTTTTTGTACTTGTGACAAATTAGCAGGGTTAAAACGACAATGAAGAGGAGACAAACACCAATTGTTGCATAGAATGAGATGTTGTCTTGGATGAAAGGGAAGGGGC\n\n.. _easy_install.sh: https://github.com/iric-soft/km/blob/master/easy_install.sh\n\nWithout install:\n----------------\nkm can be executed directly from source code.\n\nRequirements:\n*************\n* Python 3.6.0 or later\n* pyJellyfish python module or Jellyfish 2.2 or later **with** Python `bindings`_.\n\nUsage:\n******\n\n.. code:: shell\n\n  $ cd [your_km_folder]\n  $ python -m km find_mutation ./data/catalog/GRCh38/NPM1_4ins_exons_10-11utr.fa ./data/jf/02H025_NPM1.jf | km find_report -t ./data/catalog/GRCh38/NPM1_4ins_exons_10-11utr.fa\n\n.. _bindings: https://github.com/gmarcais/Jellyfish#binding-to-script-languages\n\n----------------------------\nDesign your target sequence:\n----------------------------\n\n* km is designed to make targeted analysis based on **target sequences**. These target sequences **need to be designed** and given to km as input.\n* A target sequence is a nucleotide sequence saved in a fasta file. Some target sequences are provided in `catalog <https://github.com/iric-soft/km/tree/master/km/data/catalog>`_.\n* To fit your specific needs, you will have to create your own target sequences.\n* On generic cases, you can follow some good practices described below:\n\n.. image:: https://github.com/iric-soft/km/blob/master/data/figure/doc_target_sequence.png\n\n* A web portal is available to assist you in the creation of your target sequences (for cases 1 and 2).\n\n  - km-target: https://bioinfo.iric.ca/km-target/\n\n* You could also extract nucleotide sequences from genome using severals methods, two of them are discribe below:\n\n  - Using `samtools <http://www.htslib.org/doc/samtools.html>`_: samtools faidx chr2:25234341-25234405 GRCh38/genome.fa\n  - Using get DNA from `ucsc <https://genome.ucsc.edu/cgi-bin/hgc?hgsid=730614743_K2u5W9UIMXrPzrUlC5KaXmWjzf4R&o=25234340&g=getDna&i=mixed&c=chr2&l=25234340&r=25234405&db=hg38&hgsid=730614743_K2u5W9UIMXrPzrUlC5KaXmWjzf4R>`_.\n\n\n-------------\nDisplay help:\n-------------\n\n.. code:: shell\n\n  $ km -h\n    usage: PROG [-h] {find_mutation,find_report,linear_kmin,min_cov} ...\n\n    positional arguments:\n      {find_mutation,find_report,linear_kmin,min_cov}\n                            sub-command help\n        find_mutation       Identify and quantify mutations from a target sequence\n                            and a k-mer database.\n        find_report         Parse find_mutation output to reformat it in tabulated\n                            file more user friendly.\n        linear_kmin         Find min k length to decompose a target sequence in a\n                            linear graph.\n        min_cov             Compute coverage of target sequences.\n\n    optional arguments:\n      -h, --help            show this help message and exit\n\n\n--------------------\nkm's tools overview:\n--------------------\n\nFor more detailed documentation click `here <https://github.com/iric-soft/km/tree/master/km/tools>`_.\n\nfind_mutation:\n--------------\n\nThis is the main tool of km, to identify and quantify mutations from\na target sequence and a k-mer jellyfish database.\n\n.. code:: shell\n\n  $ km find_mutation -h\n  $ km find_mutation [your_fasta_targetSeq] [your_jellyfish_count_table]\n  $ km find_mutation [your_catalog_directory] [your_jellyfish_count_table]\n\nfind_report:\n------------\n\nThis tool parse find_mutation output to reformat it in more user friendly\ntabulated file.\n\n.. code:: shell\n\n  $ km find_report -h\n  $ km find_report -t [your_fasta_targetSeq] [find_mutation_output]\n  $ km find_mutation [your_fasta_targetSeq] [your_jellyfish_count_table] | km find_report -t [your_fasta_targetSeq]\n\nmin_cov:\n--------\n\nThis tools display some k-mer's coverage stats of a target sequence and a list of jellyfish database.\n\n.. code:: shell\n\n  $ km min_cov -h\n  $ km min_cov [your_fasta_targetSeq] [[your_jellyfish_count_table]...]\n\nlinear_kmin:\n------------\n\nLength of k-mers is a central parameter:\n\n* To produce a linear directed graph from the target sequence.\n* To avoid false-positive. find_mutation shouldn't be use on jellyfish count table build with k<21 bp (we recommand k=31 bp, by default)\n\nlinear_kmin tool is design to give you the minimun k length to allow a\ndecomposition of a target sequence in a linear graph.\n\n.. code:: shell\n\n  $ km linear_kmin -h\n  $ km linear_kmin [your_catalog_directory]\n\n-------------------------------------------------\nRuning km on a real sample from downloaded fastq:\n-------------------------------------------------\nIn the `example`_ folder you can find a script to help you to\nrun a km analysis on one Leucegene sample.\n\n  .. _example: https://github.com/iric-soft/km/tree/master/example\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A software for RNA-seq investigation using k-mer decomposition",
    "version": "2.2.1",
    "project_urls": {
        "Homepage": "https://github.com/iric-soft/km"
    },
    "split_keywords": [
        "k-mer",
        "rna-seq",
        "variant",
        "sequencing"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a3a2c86591c0c15ab539cdb638ec6b61cef03e797a011b253b957c9b8e206a53",
                "md5": "3103c890dd3f630fd5f6bf2d41cade4a",
                "sha256": "2e34fb84829491440310eee35f83488b563d66509898090545951c0a4a060696"
            },
            "downloads": -1,
            "filename": "km_walk-2.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3103c890dd3f630fd5f6bf2d41cade4a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 33373,
            "upload_time": "2023-08-01T21:04:09",
            "upload_time_iso_8601": "2023-08-01T21:04:09.393087Z",
            "url": "https://files.pythonhosted.org/packages/a3/a2/c86591c0c15ab539cdb638ec6b61cef03e797a011b253b957c9b8e206a53/km_walk-2.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "80a0b89ed2a3f9186e2ff4cec1524a3e990ac7c3a77f3781663b2060bbed6f8f",
                "md5": "84ded495642ef553bba194408f731b02",
                "sha256": "27f01c3742e4b7d86d5c49017512456d6ca6f6471f7e482ed863fad7bdd4e16d"
            },
            "downloads": -1,
            "filename": "km-walk-2.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "84ded495642ef553bba194408f731b02",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 32587,
            "upload_time": "2023-08-01T21:04:11",
            "upload_time_iso_8601": "2023-08-01T21:04:11.093854Z",
            "url": "https://files.pythonhosted.org/packages/80/a0/b89ed2a3f9186e2ff4cec1524a3e990ac7c3a77f3781663b2060bbed6f8f/km-walk-2.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-08-01 21:04:11",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "iric-soft",
    "github_project": "km",
    "travis_ci": true,
    "coveralls": true,
    "github_actions": false,
    "lcname": "km-walk"
}
        
Elapsed time: 1.78809s