km3irf


Namekm3irf JSON
Version 0.4.0 PyPI version JSON
download
home_pagehttps://git.km3net.de/km3py/km3irf
SummaryKM3NeT instrument response functions
upload_time2023-09-25 16:57:19
maintainerTamas Gal
docs_urlNone
authorTamas Gal
requires_python>=3.6
licenseMIT
keywords neutrino astroparticle physics hep
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            .. image:: https://git.km3net.de/km3py/km3irf/badges/main/pipeline.svg
    :target: https://git.km3net.de/km3py/km3irf/pipelines

.. image:: https://git.km3net.de/km3py/km3irf/badges/main/coverage.svg
    :target: https://km3py.pages.km3net.de/km3irf/coverage

.. image:: https://git.km3net.de/examples/km3badges/-/raw/master/docs-latest-brightgreen.svg
    :target: https://km3py.pages.km3net.de/km3irf

.. image:: https://git.km3net.de/km3py/km3irf/-/badges/release.svg
    :target: https://git.km3net.de/km3py/km3irf/-/releases

.. image:: https://img.shields.io/badge/License-BSD_3--Clause-blueviolet.svg
    :target: https://opensource.org/licenses/BSD-3-Clause

KM3NeT instrument response functions
====================================

This project provides a versatile tool that can be used to quickly analyze the sensitivity of the **KM3NeT** detector for various source models.
Currently it considers only point-like sources. The main feature of the tool is deep targeting to ``gammapy`` software.
At same time it is independent from installation of ``gammapy`` software.
For further analysis in ``gammapy``, ``km3irf`` provides next modules:

* Instrument response function (IRF)

  * Effective area (Aeff)

  * Energy dispertion (Edisp)

  * Point spread function (PSF)

* Data set (*in progress*)

* Event list (*in progress*)

Installation
------------

It is recommended to create an isolated virtualenvironment to not interfere
with other Python projects, preferably inside the project's folder. First clone
the repository with::

  git clone git@git.km3net.de:km3py/km3irf.git

or::

  git clone https://git.km3net.de/km3py/km3irf.git

Create and acitvate a virtual environment::

  cd km3irf
  python3 -m venv venv
  . venv/bin/activate

Install the package with::

  make install

You can also install the package directly from ``Pypi`` via ``pip`` package manager (no cloning needed).
It can easily be done into any Python environment with next command::

  pip install km3irf

To install all the development dependencies, in case you want to contribute or
run the test suite::

  make install-dev
  make test


---

*Created with ``cookiecutter https://git.km3net.de/templates/python-project``*



            

Raw data

            {
    "_id": null,
    "home_page": "https://git.km3net.de/km3py/km3irf",
    "name": "km3irf",
    "maintainer": "Tamas Gal",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "tgal@km3net.de",
    "keywords": "neutrino,astroparticle,physics,HEP",
    "author": "Tamas Gal",
    "author_email": "tgal@km3net.de",
    "download_url": "https://files.pythonhosted.org/packages/b7/e5/1830ce19224e262b125be3cb2054900b315f1512e5921247e24af95bac6e/km3irf-0.4.0.tar.gz",
    "platform": null,
    "description": ".. image:: https://git.km3net.de/km3py/km3irf/badges/main/pipeline.svg\n    :target: https://git.km3net.de/km3py/km3irf/pipelines\n\n.. image:: https://git.km3net.de/km3py/km3irf/badges/main/coverage.svg\n    :target: https://km3py.pages.km3net.de/km3irf/coverage\n\n.. image:: https://git.km3net.de/examples/km3badges/-/raw/master/docs-latest-brightgreen.svg\n    :target: https://km3py.pages.km3net.de/km3irf\n\n.. image:: https://git.km3net.de/km3py/km3irf/-/badges/release.svg\n    :target: https://git.km3net.de/km3py/km3irf/-/releases\n\n.. image:: https://img.shields.io/badge/License-BSD_3--Clause-blueviolet.svg\n    :target: https://opensource.org/licenses/BSD-3-Clause\n\nKM3NeT instrument response functions\n====================================\n\nThis project provides a versatile tool that can be used to quickly analyze the sensitivity of the **KM3NeT** detector for various source models.\nCurrently it considers only point-like sources. The main feature of the tool is deep targeting to ``gammapy`` software.\nAt same time it is independent from installation of ``gammapy`` software.\nFor further analysis in ``gammapy``, ``km3irf`` provides next modules:\n\n* Instrument response function (IRF)\n\n  * Effective area (Aeff)\n\n  * Energy dispertion (Edisp)\n\n  * Point spread function (PSF)\n\n* Data set (*in progress*)\n\n* Event list (*in progress*)\n\nInstallation\n------------\n\nIt is recommended to create an isolated virtualenvironment to not interfere\nwith other Python projects, preferably inside the project's folder. First clone\nthe repository with::\n\n  git clone git@git.km3net.de:km3py/km3irf.git\n\nor::\n\n  git clone https://git.km3net.de/km3py/km3irf.git\n\nCreate and acitvate a virtual environment::\n\n  cd km3irf\n  python3 -m venv venv\n  . venv/bin/activate\n\nInstall the package with::\n\n  make install\n\nYou can also install the package directly from ``Pypi`` via ``pip`` package manager (no cloning needed).\nIt can easily be done into any Python environment with next command::\n\n  pip install km3irf\n\nTo install all the development dependencies, in case you want to contribute or\nrun the test suite::\n\n  make install-dev\n  make test\n\n\n---\n\n*Created with ``cookiecutter https://git.km3net.de/templates/python-project``*\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "KM3NeT instrument response functions",
    "version": "0.4.0",
    "project_urls": {
        "Homepage": "https://git.km3net.de/km3py/km3irf"
    },
    "split_keywords": [
        "neutrino",
        "astroparticle",
        "physics",
        "hep"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "edd96d0b762713d858b59771433b1490415fbd4892c193e6fa3d26fc10bdae87",
                "md5": "94592d7b5d8f9fa35fb5740806274d1d",
                "sha256": "24c1e1801b176207b47637c61aeb2e9fe2bfb86402ab79880772e1e4e8e406d4"
            },
            "downloads": -1,
            "filename": "km3irf-0.4.0-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "94592d7b5d8f9fa35fb5740806274d1d",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": ">=3.6",
            "size": 474728,
            "upload_time": "2023-09-25T16:57:16",
            "upload_time_iso_8601": "2023-09-25T16:57:16.511867Z",
            "url": "https://files.pythonhosted.org/packages/ed/d9/6d0b762713d858b59771433b1490415fbd4892c193e6fa3d26fc10bdae87/km3irf-0.4.0-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b7e51830ce19224e262b125be3cb2054900b315f1512e5921247e24af95bac6e",
                "md5": "73ae993f8937c16f777a16c68cfe611d",
                "sha256": "f600bb673329f81fa3fe05fff122c9f78c89de0bbc173dc5bdc6415b480c1040"
            },
            "downloads": -1,
            "filename": "km3irf-0.4.0.tar.gz",
            "has_sig": false,
            "md5_digest": "73ae993f8937c16f777a16c68cfe611d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 886212,
            "upload_time": "2023-09-25T16:57:19",
            "upload_time_iso_8601": "2023-09-25T16:57:19.154041Z",
            "url": "https://files.pythonhosted.org/packages/b7/e5/1830ce19224e262b125be3cb2054900b315f1512e5921247e24af95bac6e/km3irf-0.4.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-09-25 16:57:19",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "km3irf"
}
        
Elapsed time: 0.15584s