kola


Namekola JSON
Version 1.6.0 PyPI version JSON
download
home_pageNone
Summarya Python Polars interface to kdb+/q
upload_time2025-02-15 02:40:57
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseNone
keywords q kdb polars dataframe arrow
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # kola

a Python [Polars](https://pola-rs.github.io/polars/) Interface to kdb+/q

## Basic Data Type Map

### Deserialization

#### Atom

| k type      | n   | size | python type | note                        |
| ----------- | --- | ---- | ----------- | --------------------------- |
| `boolean`   | 1   | 1    | `bool`      |                             |
| `guid`      | 2   | 16   | `str`       |                             |
| `byte`      | 4   | 1    | `int`       |                             |
| `short`     | 5   | 2    | `int`       |                             |
| `int`       | 6   | 4    | `int`       |                             |
| `long`      | 7   | 8    | `int`       |                             |
| `real`      | 8   | 4    | `float`     |                             |
| `float`     | 9   | 8    | `float`     |                             |
| `char`      | 10  | 1    | `str`       |                             |
| `string`    | 10  | 1    | `str`       |                             |
| `symbol`    | 11  | \*   | `str`       |                             |
| `timestamp` | 12  | 8    | `datetime`  |                             |
| `month`     | 13  | 4    | `-`         |                             |
| `date`      | 14  | 4    | `date`      | 0001.01.01 - 9999.12.31     |
| `datetime`  | 15  | 8    | `datetime`  |                             |
| `timespan`  | 16  | 8    | `timedelta` |                             |
| `minute`    | 17  | 4    | `time`      | 00:00 - 23:59               |
| `second`    | 18  | 4    | `time`      | 00:00:00 - 23:59:59         |
| `time`      | 19  | 4    | `time`      | 00:00:00.000 - 23:59:59.999 |

#### Composite Data Type

| k type           | n   | size | python type              |
| ---------------- | --- | ---- | ------------------------ |
| `boolean list`   | 1   | 1    | `pl.Boolean`             |
| `guid list`      | 2   | 16   | `pl.List(pl.Binary(16))` |
| `byte list`      | 4   | 1    | `pl.Uint8`               |
| `short list`     | 5   | 2    | `pl.Int16`               |
| `int list`       | 6   | 4    | `pl.Int32`               |
| `long list`      | 7   | 8    | `pl.Int64`               |
| `real list`      | 8   | 4    | `pl.Float32`             |
| `float list`     | 9   | 8    | `pl.Float64`             |
| `char list`      | 10  | 1    | `pl.Utf8`                |
| `string list`    | 10  | 1    | `pl.Utf8`                |
| `symbol list`    | 11  | \*   | `pl.Categorical`         |
| `timestamp list` | 12  | 8    | `pl.Datetime`            |
| `month list`     | 13  | 4    | `-`                      |
| `date list`      | 14  | 4    | `pl.Date`                |
| `datetime list`  | 15  | 8    | `pl.Datetime`            |
| `timespan list`  | 16  | 8    | `pl.Duration`            |
| `minute list`    | 17  | 4    | `pl.Time`                |
| `second list`    | 18  | 4    | `pl.Time`                |
| `time list`      | 19  | 4    | `pl.Time`                |
| `table`          | 98  | \*   | `pl.DataFrame`           |
| `dictionary`     | 99  | \*   | `-`                      |
| `keyed table`    | 99  | \*   | `pl.DataFrame`           |

> performance is impacted by converting guid to string, deserialize the uuid to 16 fixed binary list, use .hex() to convert binary to string if required

> real/float 0n is mapped to Polars null not NaN

> short/int/long 0Nh/i/j, 0Wh/i/j and -0Wh/i/j are mapped to null

```
df.with_columns([
    (pl.col("uuid").apply(lambda u: u.hex()))
    ])
```

### Serialization

#### Basic Data Type

| python type | k type      | note                        |
| ----------- | ----------- | --------------------------- |
| `bool`      | `boolean`   |                             |
| `int`       | `long`      |                             |
| `float`     | `float`     |                             |
| `str`       | `symbol`    |                             |
| `bytes`     | `string`    |                             |
| `datetime`  | `timestamp` |                             |
| `date`      | `date`      | 0001.01.01 - 9999.12.31     |
| `datetime`  | `datetime`  |                             |
| `timedelta` | `timespan`  |                             |
| `time`      | `time`      | 00:00:00.000 - 23:59:59.999 |

#### Dictionary, Series and DataFrame

| python type              | k type    |
| ------------------------ | --------- |
| `dict`                   | dict      |
| `pl.Boolean`             | boolean   |
| `pl.List(pl.Binary(16))` | guid      |
| `pl.Uint8`               | byte      |
| `pl.Int16`               | short     |
| `pl.Int32`               | int       |
| `pl.Int64`               | long      |
| `pl.Float32`             | real      |
| `pl.Float64`             | float     |
| `pl.Utf8`                | char      |
| `pl.Categorical`         | symbol    |
| `pl.Datetime`            | timestamp |
| `pl.Date`                | date      |
| `pl.Datetime`            | datetime  |
| `pl.Duration`            | timespan  |
| `pl.Time`                | time      |
| `pl.DataFrame`           | table     |

> Limited Support for dictionary as arguments, requires `string` as keys.

## Quick Start

### Create a Connection

```python
import polars as pl
import kola
q = kola.Q('localhost', 1800)

# with retries for IO Errors, 1s, 2s, 4s ...
q = kola.Q('localhost', 1800, retries=3)

# with read timeout error, 2s, "Resource temporarily unavailable"
q = kola.Q('localhost', 1800, retries=3, timeout=2)
```

### Connect(Optional)

Automatically connect when querying q process

```python
q.connect()
```

### Disconnect

Automatically disconnect if any IO error

```python
q.disconnect()
```

### String Query

```python
q.sync("select from trade where date=last date")
```

### Lambda Query

When the first string starts with `{` and ends with `}`, it is treated as a lambda.

```python
d = {"a": 1, "b": 2}
q.sync("{key x}", d)
```

### Functional Query

For functional query, `kola` supports Python [Basic Data Type](#basic-data-type), `pl.Series`, `pl.DataFrame` and Python Dictionary with string keys and Python [Basic Data Type](#basic-data-type) and `pl.Series` values.

```python
from datetime import date, time

q.sync(
    ".gw.query",
    "table",
    {
        "date": date(2023, 11, 21),
        "syms": pl.Series("", ["sym0", "sym1"], pl.Categorical),
        # 09:00
        "startTime": time(9),
        # 11:30
        "endTime": time(11, 30),
    },
)
```

### Send DataFrame

```python
# pl_df is a Polars DataFrame
q.sync("upsert", "table", pl_df)
```

```python
# pd_df is a Pandas DataFrame, use pl.DateFrame to cast Pandas DataFrame
q.sync("upsert", "table", pl.DataFrame(pd_df))
```

### Async Query

```python
# pl_df is a Polars DataFrame
q.asyn("upsert", "table", pl_df)
```

### Subscribe

```python
from kola import QType

q.sync(".u.sub", pl.Series("", ["table1", "table2"], QType.Symbol), "")

# specify symbol filter
q.sync(
    ".u.sub",
    pl.Series("", ["table1", "table2"], QType.Symbol),
    pl.Series("", ["sym1", "sym2"], QType.Symbol),
)

while true:
    # ("upd", "table", pl.Dataframe)
    upd = self.q.receive()
    print(upd)
```

### Generate IPC

```python
import polars as pl
from kola import generate_ipc

df = pl.DataFrame(
    {
        "sym": pl.Series("sym", ["a", "b", "c"], pl.Categorical),
        "price": [1, 2, 3],
    }
)
# without compression
buffer = generate_ipc("sync", False, ["upd", "table", df])

# with compression
buffer = generate_ipc("sync", True, ["upd", "table", df])
```

## Polars Documentations

Refer to

- [User Guide](https://pola-rs.github.io/polars/user-guide/)
- [API Reference](https://pola-rs.github.io/polars/py-polars/html/reference/index.html)


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "kola",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "q, kdb, polars, dataframe, arrow",
    "author": null,
    "author_email": "Jo Shinonome <jo.shinonome@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/04/e6/66a0daca1f505c7b90cbd231931e44a159e81aeb09b549f9fb08c8af2fac/kola-1.6.0.tar.gz",
    "platform": null,
    "description": "# kola\n\na Python [Polars](https://pola-rs.github.io/polars/) Interface to kdb+/q\n\n## Basic Data Type Map\n\n### Deserialization\n\n#### Atom\n\n| k type      | n   | size | python type | note                        |\n| ----------- | --- | ---- | ----------- | --------------------------- |\n| `boolean`   | 1   | 1    | `bool`      |                             |\n| `guid`      | 2   | 16   | `str`       |                             |\n| `byte`      | 4   | 1    | `int`       |                             |\n| `short`     | 5   | 2    | `int`       |                             |\n| `int`       | 6   | 4    | `int`       |                             |\n| `long`      | 7   | 8    | `int`       |                             |\n| `real`      | 8   | 4    | `float`     |                             |\n| `float`     | 9   | 8    | `float`     |                             |\n| `char`      | 10  | 1    | `str`       |                             |\n| `string`    | 10  | 1    | `str`       |                             |\n| `symbol`    | 11  | \\*   | `str`       |                             |\n| `timestamp` | 12  | 8    | `datetime`  |                             |\n| `month`     | 13  | 4    | `-`         |                             |\n| `date`      | 14  | 4    | `date`      | 0001.01.01 - 9999.12.31     |\n| `datetime`  | 15  | 8    | `datetime`  |                             |\n| `timespan`  | 16  | 8    | `timedelta` |                             |\n| `minute`    | 17  | 4    | `time`      | 00:00 - 23:59               |\n| `second`    | 18  | 4    | `time`      | 00:00:00 - 23:59:59         |\n| `time`      | 19  | 4    | `time`      | 00:00:00.000 - 23:59:59.999 |\n\n#### Composite Data Type\n\n| k type           | n   | size | python type              |\n| ---------------- | --- | ---- | ------------------------ |\n| `boolean list`   | 1   | 1    | `pl.Boolean`             |\n| `guid list`      | 2   | 16   | `pl.List(pl.Binary(16))` |\n| `byte list`      | 4   | 1    | `pl.Uint8`               |\n| `short list`     | 5   | 2    | `pl.Int16`               |\n| `int list`       | 6   | 4    | `pl.Int32`               |\n| `long list`      | 7   | 8    | `pl.Int64`               |\n| `real list`      | 8   | 4    | `pl.Float32`             |\n| `float list`     | 9   | 8    | `pl.Float64`             |\n| `char list`      | 10  | 1    | `pl.Utf8`                |\n| `string list`    | 10  | 1    | `pl.Utf8`                |\n| `symbol list`    | 11  | \\*   | `pl.Categorical`         |\n| `timestamp list` | 12  | 8    | `pl.Datetime`            |\n| `month list`     | 13  | 4    | `-`                      |\n| `date list`      | 14  | 4    | `pl.Date`                |\n| `datetime list`  | 15  | 8    | `pl.Datetime`            |\n| `timespan list`  | 16  | 8    | `pl.Duration`            |\n| `minute list`    | 17  | 4    | `pl.Time`                |\n| `second list`    | 18  | 4    | `pl.Time`                |\n| `time list`      | 19  | 4    | `pl.Time`                |\n| `table`          | 98  | \\*   | `pl.DataFrame`           |\n| `dictionary`     | 99  | \\*   | `-`                      |\n| `keyed table`    | 99  | \\*   | `pl.DataFrame`           |\n\n> performance is impacted by converting guid to string, deserialize the uuid to 16 fixed binary list, use .hex() to convert binary to string if required\n\n> real/float 0n is mapped to Polars null not NaN\n\n> short/int/long 0Nh/i/j, 0Wh/i/j and -0Wh/i/j are mapped to null\n\n```\ndf.with_columns([\n    (pl.col(\"uuid\").apply(lambda u: u.hex()))\n    ])\n```\n\n### Serialization\n\n#### Basic Data Type\n\n| python type | k type      | note                        |\n| ----------- | ----------- | --------------------------- |\n| `bool`      | `boolean`   |                             |\n| `int`       | `long`      |                             |\n| `float`     | `float`     |                             |\n| `str`       | `symbol`    |                             |\n| `bytes`     | `string`    |                             |\n| `datetime`  | `timestamp` |                             |\n| `date`      | `date`      | 0001.01.01 - 9999.12.31     |\n| `datetime`  | `datetime`  |                             |\n| `timedelta` | `timespan`  |                             |\n| `time`      | `time`      | 00:00:00.000 - 23:59:59.999 |\n\n#### Dictionary, Series and DataFrame\n\n| python type              | k type    |\n| ------------------------ | --------- |\n| `dict`                   | dict      |\n| `pl.Boolean`             | boolean   |\n| `pl.List(pl.Binary(16))` | guid      |\n| `pl.Uint8`               | byte      |\n| `pl.Int16`               | short     |\n| `pl.Int32`               | int       |\n| `pl.Int64`               | long      |\n| `pl.Float32`             | real      |\n| `pl.Float64`             | float     |\n| `pl.Utf8`                | char      |\n| `pl.Categorical`         | symbol    |\n| `pl.Datetime`            | timestamp |\n| `pl.Date`                | date      |\n| `pl.Datetime`            | datetime  |\n| `pl.Duration`            | timespan  |\n| `pl.Time`                | time      |\n| `pl.DataFrame`           | table     |\n\n> Limited Support for dictionary as arguments, requires `string` as keys.\n\n## Quick Start\n\n### Create a Connection\n\n```python\nimport polars as pl\nimport kola\nq = kola.Q('localhost', 1800)\n\n# with retries for IO Errors, 1s, 2s, 4s ...\nq = kola.Q('localhost', 1800, retries=3)\n\n# with read timeout error, 2s, \"Resource temporarily unavailable\"\nq = kola.Q('localhost', 1800, retries=3, timeout=2)\n```\n\n### Connect(Optional)\n\nAutomatically connect when querying q process\n\n```python\nq.connect()\n```\n\n### Disconnect\n\nAutomatically disconnect if any IO error\n\n```python\nq.disconnect()\n```\n\n### String Query\n\n```python\nq.sync(\"select from trade where date=last date\")\n```\n\n### Lambda Query\n\nWhen the first string starts with `{` and ends with `}`, it is treated as a lambda.\n\n```python\nd = {\"a\": 1, \"b\": 2}\nq.sync(\"{key x}\", d)\n```\n\n### Functional Query\n\nFor functional query, `kola` supports Python [Basic Data Type](#basic-data-type), `pl.Series`, `pl.DataFrame` and Python Dictionary with string keys and Python [Basic Data Type](#basic-data-type) and `pl.Series` values.\n\n```python\nfrom datetime import date, time\n\nq.sync(\n    \".gw.query\",\n    \"table\",\n    {\n        \"date\": date(2023, 11, 21),\n        \"syms\": pl.Series(\"\", [\"sym0\", \"sym1\"], pl.Categorical),\n        # 09:00\n        \"startTime\": time(9),\n        # 11:30\n        \"endTime\": time(11, 30),\n    },\n)\n```\n\n### Send DataFrame\n\n```python\n# pl_df is a Polars DataFrame\nq.sync(\"upsert\", \"table\", pl_df)\n```\n\n```python\n# pd_df is a Pandas DataFrame, use pl.DateFrame to cast Pandas DataFrame\nq.sync(\"upsert\", \"table\", pl.DataFrame(pd_df))\n```\n\n### Async Query\n\n```python\n# pl_df is a Polars DataFrame\nq.asyn(\"upsert\", \"table\", pl_df)\n```\n\n### Subscribe\n\n```python\nfrom kola import QType\n\nq.sync(\".u.sub\", pl.Series(\"\", [\"table1\", \"table2\"], QType.Symbol), \"\")\n\n# specify symbol filter\nq.sync(\n    \".u.sub\",\n    pl.Series(\"\", [\"table1\", \"table2\"], QType.Symbol),\n    pl.Series(\"\", [\"sym1\", \"sym2\"], QType.Symbol),\n)\n\nwhile true:\n    # (\"upd\", \"table\", pl.Dataframe)\n    upd = self.q.receive()\n    print(upd)\n```\n\n### Generate IPC\n\n```python\nimport polars as pl\nfrom kola import generate_ipc\n\ndf = pl.DataFrame(\n    {\n        \"sym\": pl.Series(\"sym\", [\"a\", \"b\", \"c\"], pl.Categorical),\n        \"price\": [1, 2, 3],\n    }\n)\n# without compression\nbuffer = generate_ipc(\"sync\", False, [\"upd\", \"table\", df])\n\n# with compression\nbuffer = generate_ipc(\"sync\", True, [\"upd\", \"table\", df])\n```\n\n## Polars Documentations\n\nRefer to\n\n- [User Guide](https://pola-rs.github.io/polars/user-guide/)\n- [API Reference](https://pola-rs.github.io/polars/py-polars/html/reference/index.html)\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "a Python Polars interface to kdb+/q",
    "version": "1.6.0",
    "project_urls": {
        "Repository": "https://github.com/jshinonome/kola"
    },
    "split_keywords": [
        "q",
        " kdb",
        " polars",
        " dataframe",
        " arrow"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "4b650f7e618f462e05cb6b5c912deffd8ef1129527084cc79fc2e431bf48bdde",
                "md5": "810990aa4382b5c280d59df4fe3c3b8e",
                "sha256": "16ba0f3760286f36c258f91646e7fcf92f03d4e940b52e23dfba1f1d2f0408f1"
            },
            "downloads": -1,
            "filename": "kola-1.6.0-cp310-cp310-manylinux_2_31_x86_64.whl",
            "has_sig": false,
            "md5_digest": "810990aa4382b5c280d59df4fe3c3b8e",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.9",
            "size": 7200599,
            "upload_time": "2025-02-15T02:40:41",
            "upload_time_iso_8601": "2025-02-15T02:40:41.651716Z",
            "url": "https://files.pythonhosted.org/packages/4b/65/0f7e618f462e05cb6b5c912deffd8ef1129527084cc79fc2e431bf48bdde/kola-1.6.0-cp310-cp310-manylinux_2_31_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "700bb80b9b97ec7ca916e09f7d402b7d6e0336c31a3602824df28e2a65e6ddfa",
                "md5": "44fe51609420389dad6e0b41e92f73c6",
                "sha256": "f28cfb5ac4f13fc12dfafa19c3189e4509403144dd0477fd7366f41fbb83218b"
            },
            "downloads": -1,
            "filename": "kola-1.6.0-cp311-cp311-manylinux_2_31_x86_64.whl",
            "has_sig": false,
            "md5_digest": "44fe51609420389dad6e0b41e92f73c6",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.9",
            "size": 7200001,
            "upload_time": "2025-02-15T02:40:44",
            "upload_time_iso_8601": "2025-02-15T02:40:44.981173Z",
            "url": "https://files.pythonhosted.org/packages/70/0b/b80b9b97ec7ca916e09f7d402b7d6e0336c31a3602824df28e2a65e6ddfa/kola-1.6.0-cp311-cp311-manylinux_2_31_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "c8d167065952769e493a82382f15a71fbe9f3f46e9ccf1009645fec61011af08",
                "md5": "27658bd101ce0a284b54e9e78b9c9961",
                "sha256": "70550ed62290b9b7e01d58945f07a00ea114e829b1e76aa2c493b6be54684a26"
            },
            "downloads": -1,
            "filename": "kola-1.6.0-cp312-cp312-manylinux_2_31_x86_64.whl",
            "has_sig": false,
            "md5_digest": "27658bd101ce0a284b54e9e78b9c9961",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.9",
            "size": 7199168,
            "upload_time": "2025-02-15T02:40:47",
            "upload_time_iso_8601": "2025-02-15T02:40:47.838629Z",
            "url": "https://files.pythonhosted.org/packages/c8/d1/67065952769e493a82382f15a71fbe9f3f46e9ccf1009645fec61011af08/kola-1.6.0-cp312-cp312-manylinux_2_31_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "696e3532da1b609bd804b86d6b7a59451e34756836a476ddd80e3ab5c6de1221",
                "md5": "cb59a688e3c1f2e59e4ff9dbb6516e6f",
                "sha256": "4ecfd2d9d9345a0b7930db2312fc88662da74bc81f3eab97c29e65c8c2897815"
            },
            "downloads": -1,
            "filename": "kola-1.6.0-cp313-cp313-manylinux_2_31_x86_64.whl",
            "has_sig": false,
            "md5_digest": "cb59a688e3c1f2e59e4ff9dbb6516e6f",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": ">=3.9",
            "size": 7199354,
            "upload_time": "2025-02-15T02:40:50",
            "upload_time_iso_8601": "2025-02-15T02:40:50.707245Z",
            "url": "https://files.pythonhosted.org/packages/69/6e/3532da1b609bd804b86d6b7a59451e34756836a476ddd80e3ab5c6de1221/kola-1.6.0-cp313-cp313-manylinux_2_31_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "7abbf18f6f741dff797daeb04c4e6daafbe98470ed13fe945d0eea836a7fcd6d",
                "md5": "86204ac5ebd1ea7b93297f3ce27cac41",
                "sha256": "127bb85502bc0806be52694cd532be0124b3fe869b3971f3e12b3078a4ee85ec"
            },
            "downloads": -1,
            "filename": "kola-1.6.0-cp39-cp39-manylinux_2_31_x86_64.whl",
            "has_sig": false,
            "md5_digest": "86204ac5ebd1ea7b93297f3ce27cac41",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.9",
            "size": 7202122,
            "upload_time": "2025-02-15T02:40:54",
            "upload_time_iso_8601": "2025-02-15T02:40:54.646241Z",
            "url": "https://files.pythonhosted.org/packages/7a/bb/f18f6f741dff797daeb04c4e6daafbe98470ed13fe945d0eea836a7fcd6d/kola-1.6.0-cp39-cp39-manylinux_2_31_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "04e666a0daca1f505c7b90cbd231931e44a159e81aeb09b549f9fb08c8af2fac",
                "md5": "65069912a62614b110b02e7e454ce5c9",
                "sha256": "602340d274a6ae9557145a922873259a0309fea23b1ee477d2cc62e8109cb200"
            },
            "downloads": -1,
            "filename": "kola-1.6.0.tar.gz",
            "has_sig": false,
            "md5_digest": "65069912a62614b110b02e7e454ce5c9",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 52493,
            "upload_time": "2025-02-15T02:40:57",
            "upload_time_iso_8601": "2025-02-15T02:40:57.503816Z",
            "url": "https://files.pythonhosted.org/packages/04/e6/66a0daca1f505c7b90cbd231931e44a159e81aeb09b549f9fb08c8af2fac/kola-1.6.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-15 02:40:57",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "jshinonome",
    "github_project": "kola",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "kola"
}
        
Elapsed time: 0.42167s