kola


Namekola JSON
Version 2.0.0 PyPI version JSON
download
home_pageNone
Summarya Python Polars interface to j* and q
upload_time2025-07-20 02:42:25
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseNone
keywords j* q kdb polars dataframe arrow
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # kola

a Python [Polars](https://pola-rs.github.io/polars/) Interface to `j*` and `q`

## Basic Data Type Map

### j\*

#### Deserialization

##### Atom

| j type      | n   | size | python type | note                        |
| ----------- | --- | ---- | ----------- | --------------------------- |
| `boolean`   | 1   | 1    | `bool`      |                             |
| `u8`        | 4   | 1    | `int`       |                             |
| `i16`       | 5   | 2    | `int`       |                             |
| `i32`       | 6   | 4    | `int`       |                             |
| `i64`       | 7   | 8    | `int`       |                             |
| `f32`       | 8   | 4    | `float`     |                             |
| `f64`       | 9   | 8    | `float`     |                             |
| `string`    | 10  | 1    | `str`       |                             |
| `symbol`    | 11  | \*   | `str`       |                             |
| `timestamp` | 12  | 8    | `datetime`  |                             |
| `date`      | 14  | 4    | `date`      | 0001.01.01 - 9999.12.31     |
| `datetime`  | 15  | 8    | `datetime`  |                             |
| `duration`  | 16  | 8    | `timedelta` |                             |
| `time`      | 19  | 4    | `time`      | 00:00:00.000 - 23:59:59.999 |

##### Composite Data Type

| k type       | n    | size | python type    |
| ------------ | ---- | ---- | -------------- |
| `series`     | 1-15 | -    | `pl.Series`    |
| `list`       | 90   | -    | `Tuple`        |
| `dictionary` | 91   | \*   | `dict`         |
| `dataframe`  | 92   | \*   | `pl.DataFrame` |

#### Serialization

##### Basic Data Type

| python type | j type     | note                        |
| ----------- | ---------- | --------------------------- |
| `bool`      | `boolean`  |                             |
| `int`       | `i64`      |                             |
| `float`     | `f64`      |                             |
| `str`       | `symbol`   |                             |
| `bytes`     | `string`   |                             |
| `date`      | `date`     | 0001.01.01 - 9999.12.31     |
| `datetime`  | `datetime` |                             |
| `timedelta` | `duration` |                             |
| `time`      | `time`     | 00:00:00.000 - 23:59:59.999 |

##### Dictionary, Series and DataFrame

| python type    | j type    |
| -------------- | --------- |
| `dict`         | dict      |
| `pl.Series`    | series    |
| `pl.DataFrame` | dataframe |

> for dictionary, requires `string` as keys.

### q

#### Deserialization

##### Atom

| k type      | n   | size | python type | note                        |
| ----------- | --- | ---- | ----------- | --------------------------- |
| `boolean`   | 1   | 1    | `bool`      |                             |
| `guid`      | 2   | 16   | `str`       |                             |
| `byte`      | 4   | 1    | `int`       |                             |
| `short`     | 5   | 2    | `int`       |                             |
| `int`       | 6   | 4    | `int`       |                             |
| `long`      | 7   | 8    | `int`       |                             |
| `real`      | 8   | 4    | `float`     |                             |
| `float`     | 9   | 8    | `float`     |                             |
| `char`      | 10  | 1    | `str`       |                             |
| `string`    | 10  | 1    | `str`       |                             |
| `symbol`    | 11  | \*   | `str`       |                             |
| `timestamp` | 12  | 8    | `datetime`  |                             |
| `month`     | 13  | 4    | `-`         |                             |
| `date`      | 14  | 4    | `date`      | 0001.01.01 - 9999.12.31     |
| `datetime`  | 15  | 8    | `datetime`  |                             |
| `timespan`  | 16  | 8    | `timedelta` |                             |
| `minute`    | 17  | 4    | `time`      | 00:00 - 23:59               |
| `second`    | 18  | 4    | `time`      | 00:00:00 - 23:59:59         |
| `time`      | 19  | 4    | `time`      | 00:00:00.000 - 23:59:59.999 |

##### Composite Data Type

| k type           | n   | size | python type              |
| ---------------- | --- | ---- | ------------------------ |
| `boolean list`   | 1   | 1    | `pl.Boolean`             |
| `guid list`      | 2   | 16   | `pl.List(pl.Binary(16))` |
| `byte list`      | 4   | 1    | `pl.Uint8`               |
| `short list`     | 5   | 2    | `pl.Int16`               |
| `int list`       | 6   | 4    | `pl.Int32`               |
| `long list`      | 7   | 8    | `pl.Int64`               |
| `real list`      | 8   | 4    | `pl.Float32`             |
| `float list`     | 9   | 8    | `pl.Float64`             |
| `char list`      | 10  | 1    | `pl.Utf8`                |
| `string list`    | 10  | 1    | `pl.Utf8`                |
| `symbol list`    | 11  | \*   | `pl.Categorical`         |
| `timestamp list` | 12  | 8    | `pl.Datetime`            |
| `month list`     | 13  | 4    | `-`                      |
| `date list`      | 14  | 4    | `pl.Date`                |
| `datetime list`  | 15  | 8    | `pl.Datetime`            |
| `timespan list`  | 16  | 8    | `pl.Duration`            |
| `minute list`    | 17  | 4    | `pl.Time`                |
| `second list`    | 18  | 4    | `pl.Time`                |
| `time list`      | 19  | 4    | `pl.Time`                |
| `table`          | 98  | \*   | `pl.DataFrame`           |
| `dictionary`     | 99  | \*   | `-`                      |
| `keyed table`    | 99  | \*   | `pl.DataFrame`           |

> performance is impacted by converting guid to string, deserialize the uuid to 16 fixed binary list, use .hex() to convert binary to string if required

> real/float 0n is mapped to Polars null not NaN

> short/int/long 0Nh/i/j, 0Wh/i/j and -0Wh/i/j are mapped to null

```
df.with_columns([
    (pl.col("uuid").apply(lambda u: u.hex()))
    ])
```

#### Serialization

##### Basic Data Type

| python type | k type      | note                        |
| ----------- | ----------- | --------------------------- |
| `bool`      | `boolean`   |                             |
| `int`       | `long`      |                             |
| `float`     | `float`     |                             |
| `str`       | `symbol`    |                             |
| `bytes`     | `string`    |                             |
| `datetime`  | `timestamp` |                             |
| `date`      | `date`      | 0001.01.01 - 9999.12.31     |
| `datetime`  | `datetime`  |                             |
| `timedelta` | `timespan`  |                             |
| `time`      | `time`      | 00:00:00.000 - 23:59:59.999 |

##### Dictionary, Series and DataFrame

| python type              | k type    |
| ------------------------ | --------- |
| `dict`                   | dict      |
| `pl.Boolean`             | boolean   |
| `pl.List(pl.Binary(16))` | guid      |
| `pl.Uint8`               | byte      |
| `pl.Int16`               | short     |
| `pl.Int32`               | int       |
| `pl.Int64`               | long      |
| `pl.Float32`             | real      |
| `pl.Float64`             | float     |
| `pl.Utf8`                | char      |
| `pl.Categorical`         | symbol    |
| `pl.Datetime`            | timestamp |
| `pl.Date`                | date      |
| `pl.Datetime`            | datetime  |
| `pl.Duration`            | timespan  |
| `pl.Time`                | time      |
| `pl.DataFrame`           | table     |

> Limited Support for dictionary as arguments, requires `string` as keys.

## Quick Start

### Create a Connection

```python
import polars as pl
import kola
# Connect to j*, J and Q are both with j*
conn = kola.J('localhost', 1800)

# Connect to q
conn = kola.Q('localhost', 1800)

# with retries for IO Errors, 1s, 2s, 4s ...
conn = kola.J('localhost', 1800, retries=3)

# with read timeout error, 2s, "Resource temporarily unavailable"
conn = kola.J('localhost', 1800, retries=3, timeout=2)
```

### Connect(Optional)

Automatically connect when querying q process

```python
conn.connect()
```

### Disconnect

Automatically disconnect if any IO error

```python
conn.disconnect()
```

### String Query

```python
conn.sync("select from trade where date=last date")
```

### Functional Query

For functional query, `kola` supports Python [Basic Data Type](#basic-data-type), `pl.Series`, `pl.DataFrame` and Python Dictionary with string keys and Python [Basic Data Type](#basic-data-type) and `pl.Series` values.

```python
from datetime import date, time

conn.sync(
    ".gw.query",
    "table",
    {
        "date": date(2023, 11, 21),
        "syms": pl.Series("", ["sym0", "sym1"], pl.Categorical),
        # 09:00
        "startTime": time(9),
        # 11:30
        "endTime": time(11, 30),
    },
)
```

### Send DataFrame

```python
# pl_df is a Polars DataFrame
conn.sync("upsert", "table", pl_df)
```

```python
# pd_df is a Pandas DataFrame, use pl.DateFrame to cast Pandas DataFrame
conn.sync("upsert", "table", pl.DataFrame(pd_df))
```

### Async Query

```python
# pl_df is a Polars DataFrame
conn.asyn("upsert", "table", pl_df)
```

### Subscribe

```python
from kola import QType

conn.sync(".u.sub", pl.Series("", ["table1", "table2"], QType.Symbol), "")

# specify symbol filter
conn.sync(
    ".u.sub",
    pl.Series("", ["table1", "table2"], QType.Symbol),
    pl.Series("", ["sym1", "sym2"], QType.Symbol),
)

while true:
    # ("upd", "table", pl.Dataframe)
    upd = conn.receive()
    print(upd)
```

### Generate IPC for q

```python
import polars as pl
from kola import serialize_as_ipc_bytes6

df = pl.DataFrame(
    {
        "sym": pl.Series("sym", ["a", "b", "c"], pl.Categorical),
        "price": [1, 2, 3],
    }
)
# without compression
buffer = serialize_as_ipc_bytes6("sync", False, ["upd", "table", df])

# with compression
buffer = serialize_as_ipc_bytes6("sync", True, ["upd", "table", df])
```

## Polars Documentations

Refer to

- [User Guide](https://pola-rs.github.io/polars/user-guide/)
- [API Reference](https://pola-rs.github.io/polars/py-polars/html/reference/index.html)


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "kola",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "j*, q, kdb, polars, dataframe, arrow",
    "author": null,
    "author_email": "Jo Shinonome <jo.shinonome@gmail.com>",
    "download_url": null,
    "platform": null,
    "description": "# kola\n\na Python [Polars](https://pola-rs.github.io/polars/) Interface to `j*` and `q`\n\n## Basic Data Type Map\n\n### j\\*\n\n#### Deserialization\n\n##### Atom\n\n| j type      | n   | size | python type | note                        |\n| ----------- | --- | ---- | ----------- | --------------------------- |\n| `boolean`   | 1   | 1    | `bool`      |                             |\n| `u8`        | 4   | 1    | `int`       |                             |\n| `i16`       | 5   | 2    | `int`       |                             |\n| `i32`       | 6   | 4    | `int`       |                             |\n| `i64`       | 7   | 8    | `int`       |                             |\n| `f32`       | 8   | 4    | `float`     |                             |\n| `f64`       | 9   | 8    | `float`     |                             |\n| `string`    | 10  | 1    | `str`       |                             |\n| `symbol`    | 11  | \\*   | `str`       |                             |\n| `timestamp` | 12  | 8    | `datetime`  |                             |\n| `date`      | 14  | 4    | `date`      | 0001.01.01 - 9999.12.31     |\n| `datetime`  | 15  | 8    | `datetime`  |                             |\n| `duration`  | 16  | 8    | `timedelta` |                             |\n| `time`      | 19  | 4    | `time`      | 00:00:00.000 - 23:59:59.999 |\n\n##### Composite Data Type\n\n| k type       | n    | size | python type    |\n| ------------ | ---- | ---- | -------------- |\n| `series`     | 1-15 | -    | `pl.Series`    |\n| `list`       | 90   | -    | `Tuple`        |\n| `dictionary` | 91   | \\*   | `dict`         |\n| `dataframe`  | 92   | \\*   | `pl.DataFrame` |\n\n#### Serialization\n\n##### Basic Data Type\n\n| python type | j type     | note                        |\n| ----------- | ---------- | --------------------------- |\n| `bool`      | `boolean`  |                             |\n| `int`       | `i64`      |                             |\n| `float`     | `f64`      |                             |\n| `str`       | `symbol`   |                             |\n| `bytes`     | `string`   |                             |\n| `date`      | `date`     | 0001.01.01 - 9999.12.31     |\n| `datetime`  | `datetime` |                             |\n| `timedelta` | `duration` |                             |\n| `time`      | `time`     | 00:00:00.000 - 23:59:59.999 |\n\n##### Dictionary, Series and DataFrame\n\n| python type    | j type    |\n| -------------- | --------- |\n| `dict`         | dict      |\n| `pl.Series`    | series    |\n| `pl.DataFrame` | dataframe |\n\n> for dictionary, requires `string` as keys.\n\n### q\n\n#### Deserialization\n\n##### Atom\n\n| k type      | n   | size | python type | note                        |\n| ----------- | --- | ---- | ----------- | --------------------------- |\n| `boolean`   | 1   | 1    | `bool`      |                             |\n| `guid`      | 2   | 16   | `str`       |                             |\n| `byte`      | 4   | 1    | `int`       |                             |\n| `short`     | 5   | 2    | `int`       |                             |\n| `int`       | 6   | 4    | `int`       |                             |\n| `long`      | 7   | 8    | `int`       |                             |\n| `real`      | 8   | 4    | `float`     |                             |\n| `float`     | 9   | 8    | `float`     |                             |\n| `char`      | 10  | 1    | `str`       |                             |\n| `string`    | 10  | 1    | `str`       |                             |\n| `symbol`    | 11  | \\*   | `str`       |                             |\n| `timestamp` | 12  | 8    | `datetime`  |                             |\n| `month`     | 13  | 4    | `-`         |                             |\n| `date`      | 14  | 4    | `date`      | 0001.01.01 - 9999.12.31     |\n| `datetime`  | 15  | 8    | `datetime`  |                             |\n| `timespan`  | 16  | 8    | `timedelta` |                             |\n| `minute`    | 17  | 4    | `time`      | 00:00 - 23:59               |\n| `second`    | 18  | 4    | `time`      | 00:00:00 - 23:59:59         |\n| `time`      | 19  | 4    | `time`      | 00:00:00.000 - 23:59:59.999 |\n\n##### Composite Data Type\n\n| k type           | n   | size | python type              |\n| ---------------- | --- | ---- | ------------------------ |\n| `boolean list`   | 1   | 1    | `pl.Boolean`             |\n| `guid list`      | 2   | 16   | `pl.List(pl.Binary(16))` |\n| `byte list`      | 4   | 1    | `pl.Uint8`               |\n| `short list`     | 5   | 2    | `pl.Int16`               |\n| `int list`       | 6   | 4    | `pl.Int32`               |\n| `long list`      | 7   | 8    | `pl.Int64`               |\n| `real list`      | 8   | 4    | `pl.Float32`             |\n| `float list`     | 9   | 8    | `pl.Float64`             |\n| `char list`      | 10  | 1    | `pl.Utf8`                |\n| `string list`    | 10  | 1    | `pl.Utf8`                |\n| `symbol list`    | 11  | \\*   | `pl.Categorical`         |\n| `timestamp list` | 12  | 8    | `pl.Datetime`            |\n| `month list`     | 13  | 4    | `-`                      |\n| `date list`      | 14  | 4    | `pl.Date`                |\n| `datetime list`  | 15  | 8    | `pl.Datetime`            |\n| `timespan list`  | 16  | 8    | `pl.Duration`            |\n| `minute list`    | 17  | 4    | `pl.Time`                |\n| `second list`    | 18  | 4    | `pl.Time`                |\n| `time list`      | 19  | 4    | `pl.Time`                |\n| `table`          | 98  | \\*   | `pl.DataFrame`           |\n| `dictionary`     | 99  | \\*   | `-`                      |\n| `keyed table`    | 99  | \\*   | `pl.DataFrame`           |\n\n> performance is impacted by converting guid to string, deserialize the uuid to 16 fixed binary list, use .hex() to convert binary to string if required\n\n> real/float 0n is mapped to Polars null not NaN\n\n> short/int/long 0Nh/i/j, 0Wh/i/j and -0Wh/i/j are mapped to null\n\n```\ndf.with_columns([\n    (pl.col(\"uuid\").apply(lambda u: u.hex()))\n    ])\n```\n\n#### Serialization\n\n##### Basic Data Type\n\n| python type | k type      | note                        |\n| ----------- | ----------- | --------------------------- |\n| `bool`      | `boolean`   |                             |\n| `int`       | `long`      |                             |\n| `float`     | `float`     |                             |\n| `str`       | `symbol`    |                             |\n| `bytes`     | `string`    |                             |\n| `datetime`  | `timestamp` |                             |\n| `date`      | `date`      | 0001.01.01 - 9999.12.31     |\n| `datetime`  | `datetime`  |                             |\n| `timedelta` | `timespan`  |                             |\n| `time`      | `time`      | 00:00:00.000 - 23:59:59.999 |\n\n##### Dictionary, Series and DataFrame\n\n| python type              | k type    |\n| ------------------------ | --------- |\n| `dict`                   | dict      |\n| `pl.Boolean`             | boolean   |\n| `pl.List(pl.Binary(16))` | guid      |\n| `pl.Uint8`               | byte      |\n| `pl.Int16`               | short     |\n| `pl.Int32`               | int       |\n| `pl.Int64`               | long      |\n| `pl.Float32`             | real      |\n| `pl.Float64`             | float     |\n| `pl.Utf8`                | char      |\n| `pl.Categorical`         | symbol    |\n| `pl.Datetime`            | timestamp |\n| `pl.Date`                | date      |\n| `pl.Datetime`            | datetime  |\n| `pl.Duration`            | timespan  |\n| `pl.Time`                | time      |\n| `pl.DataFrame`           | table     |\n\n> Limited Support for dictionary as arguments, requires `string` as keys.\n\n## Quick Start\n\n### Create a Connection\n\n```python\nimport polars as pl\nimport kola\n# Connect to j*, J and Q are both with j*\nconn = kola.J('localhost', 1800)\n\n# Connect to q\nconn = kola.Q('localhost', 1800)\n\n# with retries for IO Errors, 1s, 2s, 4s ...\nconn = kola.J('localhost', 1800, retries=3)\n\n# with read timeout error, 2s, \"Resource temporarily unavailable\"\nconn = kola.J('localhost', 1800, retries=3, timeout=2)\n```\n\n### Connect(Optional)\n\nAutomatically connect when querying q process\n\n```python\nconn.connect()\n```\n\n### Disconnect\n\nAutomatically disconnect if any IO error\n\n```python\nconn.disconnect()\n```\n\n### String Query\n\n```python\nconn.sync(\"select from trade where date=last date\")\n```\n\n### Functional Query\n\nFor functional query, `kola` supports Python [Basic Data Type](#basic-data-type), `pl.Series`, `pl.DataFrame` and Python Dictionary with string keys and Python [Basic Data Type](#basic-data-type) and `pl.Series` values.\n\n```python\nfrom datetime import date, time\n\nconn.sync(\n    \".gw.query\",\n    \"table\",\n    {\n        \"date\": date(2023, 11, 21),\n        \"syms\": pl.Series(\"\", [\"sym0\", \"sym1\"], pl.Categorical),\n        # 09:00\n        \"startTime\": time(9),\n        # 11:30\n        \"endTime\": time(11, 30),\n    },\n)\n```\n\n### Send DataFrame\n\n```python\n# pl_df is a Polars DataFrame\nconn.sync(\"upsert\", \"table\", pl_df)\n```\n\n```python\n# pd_df is a Pandas DataFrame, use pl.DateFrame to cast Pandas DataFrame\nconn.sync(\"upsert\", \"table\", pl.DataFrame(pd_df))\n```\n\n### Async Query\n\n```python\n# pl_df is a Polars DataFrame\nconn.asyn(\"upsert\", \"table\", pl_df)\n```\n\n### Subscribe\n\n```python\nfrom kola import QType\n\nconn.sync(\".u.sub\", pl.Series(\"\", [\"table1\", \"table2\"], QType.Symbol), \"\")\n\n# specify symbol filter\nconn.sync(\n    \".u.sub\",\n    pl.Series(\"\", [\"table1\", \"table2\"], QType.Symbol),\n    pl.Series(\"\", [\"sym1\", \"sym2\"], QType.Symbol),\n)\n\nwhile true:\n    # (\"upd\", \"table\", pl.Dataframe)\n    upd = conn.receive()\n    print(upd)\n```\n\n### Generate IPC for q\n\n```python\nimport polars as pl\nfrom kola import serialize_as_ipc_bytes6\n\ndf = pl.DataFrame(\n    {\n        \"sym\": pl.Series(\"sym\", [\"a\", \"b\", \"c\"], pl.Categorical),\n        \"price\": [1, 2, 3],\n    }\n)\n# without compression\nbuffer = serialize_as_ipc_bytes6(\"sync\", False, [\"upd\", \"table\", df])\n\n# with compression\nbuffer = serialize_as_ipc_bytes6(\"sync\", True, [\"upd\", \"table\", df])\n```\n\n## Polars Documentations\n\nRefer to\n\n- [User Guide](https://pola-rs.github.io/polars/user-guide/)\n- [API Reference](https://pola-rs.github.io/polars/py-polars/html/reference/index.html)\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "a Python Polars interface to j* and q",
    "version": "2.0.0",
    "project_urls": {
        "Repository": "https://github.com/jshinonome/kola"
    },
    "split_keywords": [
        "j*",
        " q",
        " kdb",
        " polars",
        " dataframe",
        " arrow"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "8c50092daf4143f0d9ba5c14cceea191beae85a5827d05f5f2f7eda71343a375",
                "md5": "e77dde6ae5060f05a9ccb8a1ba2c8e1a",
                "sha256": "3e241f33ca1d56b871216e76a08762f87138e3da07e10004e7bcead6611866af"
            },
            "downloads": -1,
            "filename": "kola-2.0.0-cp310-cp310-manylinux_2_34_x86_64.whl",
            "has_sig": false,
            "md5_digest": "e77dde6ae5060f05a9ccb8a1ba2c8e1a",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.10",
            "size": 9466160,
            "upload_time": "2025-07-20T02:42:25",
            "upload_time_iso_8601": "2025-07-20T02:42:25.055996Z",
            "url": "https://files.pythonhosted.org/packages/8c/50/092daf4143f0d9ba5c14cceea191beae85a5827d05f5f2f7eda71343a375/kola-2.0.0-cp310-cp310-manylinux_2_34_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "ed55097906b689e612a88b2aed005320706fc6f5f40d313480e077032b57b139",
                "md5": "0818215a0b1c8bef0f559121776b28f3",
                "sha256": "dd24926954e8c93d22a5e80afd6b83a5715f38697434c0c914f9ca5405f9a9d3"
            },
            "downloads": -1,
            "filename": "kola-2.0.0-cp311-cp311-manylinux_2_34_x86_64.whl",
            "has_sig": false,
            "md5_digest": "0818215a0b1c8bef0f559121776b28f3",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.10",
            "size": 9466310,
            "upload_time": "2025-07-20T02:42:27",
            "upload_time_iso_8601": "2025-07-20T02:42:27.551716Z",
            "url": "https://files.pythonhosted.org/packages/ed/55/097906b689e612a88b2aed005320706fc6f5f40d313480e077032b57b139/kola-2.0.0-cp311-cp311-manylinux_2_34_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "c5ef3b83056d0d28d762fb337af9d12c49d1b2a0778e56f08cc507c10fe0d85c",
                "md5": "58bd44afe5b4d731e5386204be3e3fce",
                "sha256": "acc67e587a628f0e14d70061e2766106a9c99a29afa70ddec12c70f311c324d0"
            },
            "downloads": -1,
            "filename": "kola-2.0.0-cp312-cp312-manylinux_2_34_x86_64.whl",
            "has_sig": false,
            "md5_digest": "58bd44afe5b4d731e5386204be3e3fce",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.10",
            "size": 9463955,
            "upload_time": "2025-07-20T02:42:29",
            "upload_time_iso_8601": "2025-07-20T02:42:29.299894Z",
            "url": "https://files.pythonhosted.org/packages/c5/ef/3b83056d0d28d762fb337af9d12c49d1b2a0778e56f08cc507c10fe0d85c/kola-2.0.0-cp312-cp312-manylinux_2_34_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "b8e0b94f07d15c9c9f929d19a39287cb2231961e78334ef4b2a272b1ec8c1a79",
                "md5": "e458954d738177ba36b19288375cf0be",
                "sha256": "fb7d5dd79fe9cddb2891c0e25af4ad7d28d3e3414038fd7aa94e09099e877af6"
            },
            "downloads": -1,
            "filename": "kola-2.0.0-cp313-cp313-manylinux_2_34_x86_64.whl",
            "has_sig": false,
            "md5_digest": "e458954d738177ba36b19288375cf0be",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": ">=3.10",
            "size": 9462365,
            "upload_time": "2025-07-20T02:42:31",
            "upload_time_iso_8601": "2025-07-20T02:42:31.508465Z",
            "url": "https://files.pythonhosted.org/packages/b8/e0/b94f07d15c9c9f929d19a39287cb2231961e78334ef4b2a272b1ec8c1a79/kola-2.0.0-cp313-cp313-manylinux_2_34_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-20 02:42:25",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "jshinonome",
    "github_project": "kola",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "kola"
}
        
Elapsed time: 0.64425s