kolmogorov-abacus


Namekolmogorov-abacus JSON
Version 0.0.5 PyPI version JSON
download
home_page
SummaryA/B experiments planning and evaluation tool
upload_time2024-02-07 19:42:13
maintainer
docs_urlNone
author
requires_python>=3.8
licenseMIT License Copyright (c) 2023 Kolmogorov AI Lab Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
keywords a/b experiments oce online controlled experiment ab test experiment design
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <img alt="Experiment report" src="https://raw.githubusercontent.com/kolmogorov-lab/abacus/main/docs/source/_static/abacus.png?raw=true" width="320px" height="320px">

[![PyPI Latest Release](https://img.shields.io/pypi/v/kolmogorov-abacus.svg)](https://pypi.org/project/kolmogorov-abacus/)
[![PyPI Downloads](https://img.shields.io/pypi/dm/kolmogorov-abacus.svg?label=PyPI%20downloads)](https://pypi.org/project/kolmogorov-abacus/)
[![Telegram](https://img.shields.io/badge/telegram-kolmogorov_abacus-blueviolet.svg?logo=telegram)](https://t.me/kolmogorov_abacus_chat)
[![License - MIT License](https://img.shields.io/pypi/l/kolmogorov-abacus.svg)](https://github.com/kolmogorov-lab/abacus/blob/main/LICENSE)

# ABacus: fast hypothesis testing and experiment design solution

**ABacus** is a Python library developed for A/B experimentation and testing.
It includes versatile instruments for different experimentation tasks like
prepilot, sample size determination, results calculation, visualisations and reporting.

## Important features

* Experiment design: type I and II errors, effect size, sample size simulations.
* Groups splitting with flexible configuration and stratification.
* A/A test and evaluation of splitter accuracy.
* Evaluation of experiment results with various statistical tests and approaches.
* Sensitivity increasing techniques like stratification, CUPED and CUPAC.
* Visualisation of experiment.
* Reporting in a human-readable format.

## Installation

You can use **pip** to install **ABacus** directly from PyPI:
```shell
pip install kolmogorov-abacus
```

or right from GitHub:

```shell
pip install pip+https://github.com/kolmogorov-lab/abacus
```

Note the requirement of Python 3.8+.

## Quick example

To define an experiment and analyse it is as easy as to describe your experiment and data:
```shell
from abacus.auto_ab.abtest import ABTest
from abacus.auto_ab.params import ABTestParams, DataParams, HypothesisParams

data_params = DataParams(...)
hypothesis_params = HypothesisParams(...)
ab_params = ABTestParams(data_params, hypothesis_params)

data = pd.read_csv('abtest_data.csv')

ab_test = ABTest(data, ab_params)

ab_test.report()
```

The result of code execution is the following:

<img alt="Experiment report" src="https://raw.githubusercontent.com/kolmogorov-lab/abacus/main/docs/source/_static/report_example.png?raw=true" width="400px">

## Documentation and Examples

Detailed [documentation](https://kolmogorov-abacus.readthedocs.io/en/latest/) and [examples](https://github.com/kolmogorov-lab/abacus/tree/main/examples) are available for your usage.

## Communication

Authors and developers:
* [Vadim Glukhov](https://github.com/educauchy)
* [Egor Shishkovets](https://github.com/egorshishkovets)
* [Dmitry Zabavin](https://github.com/dmitryzabavin)

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "kolmogorov-abacus",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "A/B,experiments,OCE,online controlled experiment,ab test,experiment design",
    "author": "",
    "author_email": "Vadim Glukhov <educauchy@gmail.com>, Egor Shishkovets <egor.shishkovets@glowbyteconsulting.com>, Dmitry Zabavin <dmitriy.zabavin@glowbyteconsulting.com>",
    "download_url": "https://files.pythonhosted.org/packages/2a/9b/853edbc8e5d432bdd4f91288706b3ee5b52d156ba1986d33a5105ec79aa3/kolmogorov-abacus-0.0.5.tar.gz",
    "platform": null,
    "description": "<img alt=\"Experiment report\" src=\"https://raw.githubusercontent.com/kolmogorov-lab/abacus/main/docs/source/_static/abacus.png?raw=true\" width=\"320px\" height=\"320px\">\n\n[![PyPI Latest Release](https://img.shields.io/pypi/v/kolmogorov-abacus.svg)](https://pypi.org/project/kolmogorov-abacus/)\n[![PyPI Downloads](https://img.shields.io/pypi/dm/kolmogorov-abacus.svg?label=PyPI%20downloads)](https://pypi.org/project/kolmogorov-abacus/)\n[![Telegram](https://img.shields.io/badge/telegram-kolmogorov_abacus-blueviolet.svg?logo=telegram)](https://t.me/kolmogorov_abacus_chat)\n[![License - MIT License](https://img.shields.io/pypi/l/kolmogorov-abacus.svg)](https://github.com/kolmogorov-lab/abacus/blob/main/LICENSE)\n\n# ABacus: fast hypothesis testing and experiment design solution\n\n**ABacus** is a Python library developed for A/B experimentation and testing.\nIt includes versatile instruments for different experimentation tasks like\nprepilot, sample size determination, results calculation, visualisations and reporting.\n\n## Important features\n\n* Experiment design: type I and II errors, effect size, sample size simulations.\n* Groups splitting with flexible configuration and stratification.\n* A/A test and evaluation of splitter accuracy.\n* Evaluation of experiment results with various statistical tests and approaches.\n* Sensitivity increasing techniques like stratification, CUPED and CUPAC.\n* Visualisation of experiment.\n* Reporting in a human-readable format.\n\n## Installation\n\nYou can use **pip** to install **ABacus** directly from PyPI:\n```shell\npip install kolmogorov-abacus\n```\n\nor right from GitHub:\n\n```shell\npip install pip+https://github.com/kolmogorov-lab/abacus\n```\n\nNote the requirement of Python 3.8+.\n\n## Quick example\n\nTo define an experiment and analyse it is as easy as to describe your experiment and data:\n```shell\nfrom abacus.auto_ab.abtest import ABTest\nfrom abacus.auto_ab.params import ABTestParams, DataParams, HypothesisParams\n\ndata_params = DataParams(...)\nhypothesis_params = HypothesisParams(...)\nab_params = ABTestParams(data_params, hypothesis_params)\n\ndata = pd.read_csv('abtest_data.csv')\n\nab_test = ABTest(data, ab_params)\n\nab_test.report()\n```\n\nThe result of code execution is the following:\n\n<img alt=\"Experiment report\" src=\"https://raw.githubusercontent.com/kolmogorov-lab/abacus/main/docs/source/_static/report_example.png?raw=true\" width=\"400px\">\n\n## Documentation and Examples\n\nDetailed [documentation](https://kolmogorov-abacus.readthedocs.io/en/latest/) and [examples](https://github.com/kolmogorov-lab/abacus/tree/main/examples) are available for your usage.\n\n## Communication\n\nAuthors and developers:\n* [Vadim Glukhov](https://github.com/educauchy)\n* [Egor Shishkovets](https://github.com/egorshishkovets)\n* [Dmitry Zabavin](https://github.com/dmitryzabavin)\n",
    "bugtrack_url": null,
    "license": "MIT License  Copyright (c) 2023 Kolmogorov AI Lab  Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:  The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.  THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.",
    "summary": "A/B experiments planning and evaluation tool",
    "version": "0.0.5",
    "project_urls": {
        "Ecosystem": "https://kolmogorov.ai/",
        "Homepage": "https://kolmogorov-abacus.readthedocs.io/",
        "Repository": "https://github.com/kolmogorov-lab/abacus/"
    },
    "split_keywords": [
        "a/b",
        "experiments",
        "oce",
        "online controlled experiment",
        "ab test",
        "experiment design"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6194d5b9e1d0a09cf4d8f45729e2cf126d2e8249627cf23dd66faa9e33384460",
                "md5": "1be04f24e173c51e6f967504755dd5c5",
                "sha256": "fc37546ef63f97a0217767b2df9887b878426990df94c5518c44f7b9c97348c1"
            },
            "downloads": -1,
            "filename": "kolmogorov_abacus-0.0.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "1be04f24e173c51e6f967504755dd5c5",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 34564,
            "upload_time": "2024-02-07T19:42:11",
            "upload_time_iso_8601": "2024-02-07T19:42:11.996195Z",
            "url": "https://files.pythonhosted.org/packages/61/94/d5b9e1d0a09cf4d8f45729e2cf126d2e8249627cf23dd66faa9e33384460/kolmogorov_abacus-0.0.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2a9b853edbc8e5d432bdd4f91288706b3ee5b52d156ba1986d33a5105ec79aa3",
                "md5": "4f7896e7d1a6d380e9074748746ea7b7",
                "sha256": "fce5a5218cdf66e7ae28120220679317a1a5b3daaf659cf93274e4cf2aed0b94"
            },
            "downloads": -1,
            "filename": "kolmogorov-abacus-0.0.5.tar.gz",
            "has_sig": false,
            "md5_digest": "4f7896e7d1a6d380e9074748746ea7b7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 30923,
            "upload_time": "2024-02-07T19:42:13",
            "upload_time_iso_8601": "2024-02-07T19:42:13.547702Z",
            "url": "https://files.pythonhosted.org/packages/2a/9b/853edbc8e5d432bdd4f91288706b3ee5b52d156ba1986d33a5105ec79aa3/kolmogorov-abacus-0.0.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-07 19:42:13",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "kolmogorov-lab",
    "github_project": "abacus",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "kolmogorov-abacus"
}
        
Elapsed time: 0.30066s