# kornia-rs: low level computer vision library in Rust

[](https://badge.fury.io/py/kornia-rs)
[](https://docs.rs/kornia)
[](LICENCE)
[](https://join.slack.com/t/kornia/shared_invite/zt-csobk21g-CnydWe5fmvkcktIeRFGCEQ)
The `kornia` crate is a low level library for Computer Vision written in [Rust](https://www.rust-lang.org/) π¦
Use the library to perform image I/O, visualisation and other low level operations in your machine learning and data-science projects in a thread-safe and efficient way.
## Getting Started
`cargo run --bin hello_world -- --image-path path/to/image.jpg`
```rust
use kornia::image::Image;
use kornia::io::functional as F;
fn main() -> Result<(), Box<dyn std::error::Error>> {
// read the image
let image: Image<u8, 3> = F::read_image_any("tests/data/dog.jpeg")?;
println!("Hello, world! π¦");
println!("Loaded Image size: {:?}", image.size());
println!("\nGoodbyte!");
Ok(())
}
```
```bash
Hello, world! π¦
Loaded Image size: ImageSize { width: 258, height: 195 }
Goodbyte!
```
## Features
- π¦The library is primarly written in [Rust](https://www.rust-lang.org/).
- π Multi-threaded and efficient image I/O, image processing and advanced computer vision operators.
- π’ Efficient Tensor and Image API for deep learning and scientific computing.
- π Python bindings are created with [PyO3/Maturin](https://github.com/PyO3/maturin).
- π¦ We package with support for Linux [amd64/arm64], Macos and WIndows.
- Supported Python versions are 3.7/3.8/3.9/3.10/3.11/3.12/3.13
### Supported image formats
- Read images from AVIF, BMP, DDS, Farbeld, GIF, HDR, ICO, JPEG (libjpeg-turbo), OpenEXR, PNG, PNM, TGA, TIFF, WebP.
### Image processing
- Convert images to grayscale, resize, crop, rotate, flip, pad, normalize, denormalize, and other image processing operations.
### Video processing
- Capture video frames from a camera and video writers.
## π οΈ Installation
### >_ System dependencies
Dependeing on the features you want to use, you might need to install the following dependencies in your system:
#### turbojpeg
```bash
sudo apt-get install nasm
```
#### gstreamer
```bash
sudo apt-get install libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev
```
** Check the gstreamr installation guide: <https://docs.rs/gstreamer/latest/gstreamer/#installation>
### π¦ Rust
Add the following to your `Cargo.toml`:
```toml
[dependencies]
kornia = "v0.1.7"
```
Alternatively, you can use each sub-crate separately:
```toml
[dependencies]
kornia-core = { git = "https://github.com/kornia/kornia-rs", tag = "v0.1.7" }
kornia-io = { git = "https://github.com/kornia/kornia-rs", tag = "v0.1.7" }
kornia-image = { git = "https://github.com/kornia/kornia-rs", tag = "v0.1.7" }
kornia-imgproc = { git = "https://github.com/kornia/kornia-rs", tag = "v0.1.7" }
```
### π Python
```bash
pip install kornia-rs
```
## Examples: Image processing
The following example shows how to read an image, convert it to grayscale and resize it. The image is then logged to a [`rerun`](https://github.com/rerun-io/rerun) recording stream.
Checkout all the examples in the [`examples`](https://github.com/kornia/kornia-rs/tree/main/examples) directory to see more use cases.
```rust
use kornia::{image::{Image, ImageSize}, imgproc};
use kornia::io::functional as F;
fn main() -> Result<(), Box<dyn std::error::Error>> {
// read the image
let image: Image<u8, 3> = F::read_image_any("tests/data/dog.jpeg")?;
let image_viz = image.clone();
let image_f32: Image<f32, 3> = image.cast_and_scale::<f32>(1.0 / 255.0)?;
// convert the image to grayscale
let mut gray = Image::<f32, 1>::from_size_val(image_f32.size(), 0.0)?;
imgproc::color::gray_from_rgb(&image_f32, &mut gray)?;
// resize the image
let new_size = ImageSize {
width: 128,
height: 128,
};
let mut gray_resized = Image::<f32, 1>::from_size_val(new_size, 0.0)?;
imgproc::resize::resize_native(
&gray, &mut gray_resized,
imgproc::resize::InterpolationMode::Bilinear,
)?;
println!("gray_resize: {:?}", gray_resized.size());
// create a Rerun recording stream
let rec = rerun::RecordingStreamBuilder::new("Kornia App").connect()?;
// log the images
let _ = rec.log("image", &rerun::Image::try_from(image_viz.data)?);
let _ = rec.log("gray", &rerun::Image::try_from(gray.data)?);
let _ = rec.log("gray_resize", &rerun::Image::try_from(gray_resized.data)?);
Ok(())
}
```

## Python usage
Load an image, that is converted directly to a numpy array to ease the integration with other libraries.
```python
import kornia_rs as K
import numpy as np
# load an image with using libjpeg-turbo
img: np.ndarray = K.read_image_jpeg("dog.jpeg")
# alternatively, load other formats
# img: np.ndarray = K.read_image_any("dog.png")
assert img.shape == (195, 258, 3)
# convert to dlpack to import to torch
img_t = torch.from_dlpack(img)
assert img_t.shape == (195, 258, 3)
```
Write an image to disk
```python
import kornia_rs as K
import numpy as np
# load an image with using libjpeg-turbo
img: np.ndarray = K.read_image_jpeg("dog.jpeg")
# write the image to disk
K.write_image_jpeg("dog_copy.jpeg", img)
```
Encode or decode image streams using the `turbojpeg` backend
```python
import kornia_rs as K
# load image with kornia-rs
img = K.read_image_jpeg("dog.jpeg")
# encode the image with jpeg
image_encoder = K.ImageEncoder()
image_encoder.set_quality(95) # set the encoding quality
# get the encoded stream
img_encoded: list[int] = image_encoder.encode(img)
# decode back the image
image_decoder = K.ImageDecoder()
decoded_img: np.ndarray = image_decoder.decode(bytes(image_encoded))
```
Resize an image using the `kornia-rs` backend with SIMD acceleration
```python
import kornia_rs as K
# load image with kornia-rs
img = K.read_image_jpeg("dog.jpeg")
# resize the image
resized_img = K.resize(img, (128, 128), interpolation="bilinear")
assert resized_img.shape == (128, 128, 3)
```
## π§βπ» Development
Pre-requisites: install `rust` and `python3` in your system.
Install rustup in your system
```bash
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
```
Install [`uv`](https://docs.astral.sh/uv/) to manage python dependencies
```bash
curl -LsSf https://astral.sh/uv/install.sh | sh
```
Install the [`just`](https://github.com/casey/just) command runner. This tool is used to manage the development tasks.
```bash
cargo install just
```
Clone the repository in your local directory
```bash
git clone https://github.com/kornia/kornia-rs.git
```
You can check the available commands by running `just` in the root directory of the project.
```bash
$ just
Available recipes:
check-environment # Check if the required binaries for the project are installed
clean # Clean up caches and build artifacts
clippy # Run clippy with all features
clippy-default # Run clippy with default features
fmt # Run autoformatting and linting
py-build py_version='3.9' # Create virtual environment, and build kornia-py
py-build-release py_version='3.9' # Create virtual environment, and build kornia-py for release
py-install py_version='3.9' # Create virtual environment, and install dev requirements
py-test # Test the kornia-py code with pytest
test name='' # Test the code or a specific test
```
### π³ Devcontainer
This project includes a development container to provide a consistent development environment.
The devcontainer is configured to include all necessary dependencies and tools required for building and testing the `kornia-rs` project. It ensures that the development environment is consistent across different machines and setups.
**How to use**
1. **Install Remote - Containers extension**: In Visual Studio Code, install the `Remote - Containers` extension from the Extensions view (`Ctrl+Shift+X`).
2. **Open the project in the container**:
- Open the `kornia-rs` project folder in Visual Studio Code.
- Press `F1` and select `Remote-Containers: Reopen in Container`.
Visual Studio Code will build the container and open the project inside it. You can now develop, build, and test the project within the containerized environment.
### π¦ Rust
Compile the project and run the tests
```bash
just test
```
For specific tests, you can run the following command:
```bash
just test image
```
### π Python
To build the Python wheels, we use the `maturin` package. Use the following command to build the wheels:
```bash
just py-build
```
To run the tests, use the following command:
```bash
just py-test
```
## π Contributing
This is a child project of [Kornia](https://github.com/kornia/kornia). Join the community to get in touch with us, or just sponsor the project: <https://opencollective.com/kornia>
Raw data
{
"_id": null,
"home_page": "http://kornia.org",
"name": "kornia-rs",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "Edgar Riba <edgar@kornia.org>",
"keywords": "computer vision, rust",
"author": null,
"author_email": "Edgar Riba <edgar@kornia.org>",
"download_url": "https://files.pythonhosted.org/packages/c6/8f/931f6273d712ba80e2d4cd83f4d43c406fcbc7a8f2758ff69f4ed62a1eb0/kornia_rs-0.1.8.tar.gz",
"platform": null,
"description": "# kornia-rs: low level computer vision library in Rust\n\n\n[](https://badge.fury.io/py/kornia-rs)\n[](https://docs.rs/kornia)\n[](LICENCE)\n[](https://join.slack.com/t/kornia/shared_invite/zt-csobk21g-CnydWe5fmvkcktIeRFGCEQ)\n\nThe `kornia` crate is a low level library for Computer Vision written in [Rust](https://www.rust-lang.org/) \ud83e\udd80\n\nUse the library to perform image I/O, visualisation and other low level operations in your machine learning and data-science projects in a thread-safe and efficient way.\n\n## Getting Started\n\n`cargo run --bin hello_world -- --image-path path/to/image.jpg`\n\n```rust\nuse kornia::image::Image;\nuse kornia::io::functional as F;\n\nfn main() -> Result<(), Box<dyn std::error::Error>> {\n // read the image\n let image: Image<u8, 3> = F::read_image_any(\"tests/data/dog.jpeg\")?;\n\n println!(\"Hello, world! \ud83e\udd80\");\n println!(\"Loaded Image size: {:?}\", image.size());\n println!(\"\\nGoodbyte!\");\n\n Ok(())\n}\n```\n\n```bash\nHello, world! \ud83e\udd80\nLoaded Image size: ImageSize { width: 258, height: 195 }\n\nGoodbyte!\n```\n\n## Features\n\n- \ud83e\udd80The library is primarly written in [Rust](https://www.rust-lang.org/).\n- \ud83d\ude80 Multi-threaded and efficient image I/O, image processing and advanced computer vision operators.\n- \ud83d\udd22 Efficient Tensor and Image API for deep learning and scientific computing.\n- \ud83d\udc0d Python bindings are created with [PyO3/Maturin](https://github.com/PyO3/maturin).\n- \ud83d\udce6 We package with support for Linux [amd64/arm64], Macos and WIndows.\n- Supported Python versions are 3.7/3.8/3.9/3.10/3.11/3.12/3.13\n\n### Supported image formats\n\n- Read images from AVIF, BMP, DDS, Farbeld, GIF, HDR, ICO, JPEG (libjpeg-turbo), OpenEXR, PNG, PNM, TGA, TIFF, WebP.\n\n### Image processing\n\n- Convert images to grayscale, resize, crop, rotate, flip, pad, normalize, denormalize, and other image processing operations.\n\n### Video processing\n\n- Capture video frames from a camera and video writers.\n\n## \ud83d\udee0\ufe0f Installation\n\n### >_ System dependencies\n\nDependeing on the features you want to use, you might need to install the following dependencies in your system:\n\n#### turbojpeg\n\n```bash\nsudo apt-get install nasm\n```\n\n#### gstreamer\n\n```bash\nsudo apt-get install libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev\n```\n\n** Check the gstreamr installation guide: <https://docs.rs/gstreamer/latest/gstreamer/#installation>\n\n### \ud83e\udd80 Rust\n\nAdd the following to your `Cargo.toml`:\n\n```toml\n[dependencies]\nkornia = \"v0.1.7\"\n```\n\nAlternatively, you can use each sub-crate separately:\n\n```toml\n[dependencies]\nkornia-core = { git = \"https://github.com/kornia/kornia-rs\", tag = \"v0.1.7\" }\nkornia-io = { git = \"https://github.com/kornia/kornia-rs\", tag = \"v0.1.7\" }\nkornia-image = { git = \"https://github.com/kornia/kornia-rs\", tag = \"v0.1.7\" }\nkornia-imgproc = { git = \"https://github.com/kornia/kornia-rs\", tag = \"v0.1.7\" }\n```\n\n### \ud83d\udc0d Python\n\n```bash\npip install kornia-rs\n```\n\n## Examples: Image processing\n\nThe following example shows how to read an image, convert it to grayscale and resize it. The image is then logged to a [`rerun`](https://github.com/rerun-io/rerun) recording stream.\n\nCheckout all the examples in the [`examples`](https://github.com/kornia/kornia-rs/tree/main/examples) directory to see more use cases.\n\n```rust\nuse kornia::{image::{Image, ImageSize}, imgproc};\nuse kornia::io::functional as F;\n\nfn main() -> Result<(), Box<dyn std::error::Error>> {\n // read the image\n let image: Image<u8, 3> = F::read_image_any(\"tests/data/dog.jpeg\")?;\n let image_viz = image.clone();\n\n let image_f32: Image<f32, 3> = image.cast_and_scale::<f32>(1.0 / 255.0)?;\n\n // convert the image to grayscale\n let mut gray = Image::<f32, 1>::from_size_val(image_f32.size(), 0.0)?;\n imgproc::color::gray_from_rgb(&image_f32, &mut gray)?;\n\n // resize the image\n let new_size = ImageSize {\n width: 128,\n height: 128,\n };\n\n let mut gray_resized = Image::<f32, 1>::from_size_val(new_size, 0.0)?;\n imgproc::resize::resize_native(\n &gray, &mut gray_resized,\n imgproc::resize::InterpolationMode::Bilinear,\n )?;\n\n println!(\"gray_resize: {:?}\", gray_resized.size());\n\n // create a Rerun recording stream\n let rec = rerun::RecordingStreamBuilder::new(\"Kornia App\").connect()?;\n\n // log the images\n let _ = rec.log(\"image\", &rerun::Image::try_from(image_viz.data)?);\n let _ = rec.log(\"gray\", &rerun::Image::try_from(gray.data)?);\n let _ = rec.log(\"gray_resize\", &rerun::Image::try_from(gray_resized.data)?);\n\n Ok(())\n}\n```\n\n\n\n## Python usage\n\nLoad an image, that is converted directly to a numpy array to ease the integration with other libraries.\n\n```python\n import kornia_rs as K\n import numpy as np\n\n # load an image with using libjpeg-turbo\n img: np.ndarray = K.read_image_jpeg(\"dog.jpeg\")\n\n # alternatively, load other formats\n # img: np.ndarray = K.read_image_any(\"dog.png\")\n\n assert img.shape == (195, 258, 3)\n\n # convert to dlpack to import to torch\n img_t = torch.from_dlpack(img)\n assert img_t.shape == (195, 258, 3)\n```\n\nWrite an image to disk\n\n```python\n import kornia_rs as K\n import numpy as np\n\n # load an image with using libjpeg-turbo\n img: np.ndarray = K.read_image_jpeg(\"dog.jpeg\")\n\n # write the image to disk\n K.write_image_jpeg(\"dog_copy.jpeg\", img)\n```\n\nEncode or decode image streams using the `turbojpeg` backend\n\n```python\nimport kornia_rs as K\n\n# load image with kornia-rs\nimg = K.read_image_jpeg(\"dog.jpeg\")\n\n# encode the image with jpeg\nimage_encoder = K.ImageEncoder()\nimage_encoder.set_quality(95) # set the encoding quality\n\n# get the encoded stream\nimg_encoded: list[int] = image_encoder.encode(img)\n\n# decode back the image\nimage_decoder = K.ImageDecoder()\n\ndecoded_img: np.ndarray = image_decoder.decode(bytes(image_encoded))\n```\n\nResize an image using the `kornia-rs` backend with SIMD acceleration\n\n```python\nimport kornia_rs as K\n\n# load image with kornia-rs\nimg = K.read_image_jpeg(\"dog.jpeg\")\n\n# resize the image\nresized_img = K.resize(img, (128, 128), interpolation=\"bilinear\")\n\nassert resized_img.shape == (128, 128, 3)\n```\n\n## \ud83e\uddd1\u200d\ud83d\udcbb Development\n\nPre-requisites: install `rust` and `python3` in your system.\n\nInstall rustup in your system\n```bash\ncurl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh\n```\n\nInstall [`uv`](https://docs.astral.sh/uv/) to manage python dependencies\n```bash\ncurl -LsSf https://astral.sh/uv/install.sh | sh\n```\n\nInstall the [`just`](https://github.com/casey/just) command runner. This tool is used to manage the development tasks.\n```bash\ncargo install just\n```\n\nClone the repository in your local directory\n```bash\ngit clone https://github.com/kornia/kornia-rs.git\n```\n\nYou can check the available commands by running `just` in the root directory of the project.\n\n```bash\n$ just\nAvailable recipes:\n check-environment # Check if the required binaries for the project are installed\n clean # Clean up caches and build artifacts\n clippy # Run clippy with all features\n clippy-default # Run clippy with default features\n fmt # Run autoformatting and linting\n py-build py_version='3.9' # Create virtual environment, and build kornia-py\n py-build-release py_version='3.9' # Create virtual environment, and build kornia-py for release\n py-install py_version='3.9' # Create virtual environment, and install dev requirements\n py-test # Test the kornia-py code with pytest\n test name='' # Test the code or a specific test\n```\n### \ud83d\udc33 Devcontainer\n\nThis project includes a development container to provide a consistent development environment.\n\nThe devcontainer is configured to include all necessary dependencies and tools required for building and testing the `kornia-rs` project. It ensures that the development environment is consistent across different machines and setups.\n\n**How to use**\n\n1. **Install Remote - Containers extension**: In Visual Studio Code, install the `Remote - Containers` extension from the Extensions view (`Ctrl+Shift+X`).\n\n2. **Open the project in the container**:\n - Open the `kornia-rs` project folder in Visual Studio Code.\n - Press `F1` and select `Remote-Containers: Reopen in Container`.\n\nVisual Studio Code will build the container and open the project inside it. You can now develop, build, and test the project within the containerized environment.\n\n### \ud83e\udd80 Rust\n\nCompile the project and run the tests\n\n```bash\njust test\n```\n\nFor specific tests, you can run the following command:\n\n```bash\njust test image\n```\n\n### \ud83d\udc0d Python\n\nTo build the Python wheels, we use the `maturin` package. Use the following command to build the wheels:\n\n```bash\njust py-build\n```\n\nTo run the tests, use the following command:\n\n```bash\njust py-test\n```\n\n## \ud83d\udc9c Contributing\n\nThis is a child project of [Kornia](https://github.com/kornia/kornia). Join the community to get in touch with us, or just sponsor the project: <https://opencollective.com/kornia>\n\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "Low level implementations for computer vision in Rust",
"version": "0.1.8",
"project_urls": {
"Homepage": "http://kornia.org",
"documentation": "https://kornia.readthedocs.io",
"homepage": "http://www.kornia.org",
"repository": "https://github.com/kornia/kornia-rs"
},
"split_keywords": [
"computer vision",
" rust"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "a146f420afb7b83a5b4f8f29cc8050c39ba218f815089b6e11c28276b3db7af4",
"md5": "d0e0bc44bef681202a28a78387039641",
"sha256": "1380edbbb841f9579bc8677d388e326b7363e1d0d49e8bab567ec9ef1aec782f"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp310-cp310-macosx_10_12_x86_64.whl",
"has_sig": false,
"md5_digest": "d0e0bc44bef681202a28a78387039641",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 1926031,
"upload_time": "2025-01-01T17:01:05",
"upload_time_iso_8601": "2025-01-01T17:01:05.018729Z",
"url": "https://files.pythonhosted.org/packages/a1/46/f420afb7b83a5b4f8f29cc8050c39ba218f815089b6e11c28276b3db7af4/kornia_rs-0.1.8-cp310-cp310-macosx_10_12_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "6a0ddd8f2cc4a6efcf72214d6b55f67713652a4b9b0bd76108c569a6c16a8829",
"md5": "742b5233bfd1c69ab9f9744fda4786f7",
"sha256": "b82cf759df6f5fd935c1afd25aa3a145fd47f14af3650ad37c71189f49171bd8"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp310-cp310-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "742b5233bfd1c69ab9f9744fda4786f7",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 1720169,
"upload_time": "2025-01-01T17:01:08",
"upload_time_iso_8601": "2025-01-01T17:01:08.192792Z",
"url": "https://files.pythonhosted.org/packages/6a/0d/dd8f2cc4a6efcf72214d6b55f67713652a4b9b0bd76108c569a6c16a8829/kornia_rs-0.1.8-cp310-cp310-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "c820d7239226a6654e2438f075b5fc523d54847cbf43f04de4555005a9dceca8",
"md5": "5f6d8e2e16177bae4ec3b39d38ac89ce",
"sha256": "1f12aeaf672493b456f2d35b4b3c88eda3dd8284807430d0b173cb3272c7ef61"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "5f6d8e2e16177bae4ec3b39d38ac89ce",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 1824036,
"upload_time": "2025-01-01T17:01:10",
"upload_time_iso_8601": "2025-01-01T17:01:10.490930Z",
"url": "https://files.pythonhosted.org/packages/c8/20/d7239226a6654e2438f075b5fc523d54847cbf43f04de4555005a9dceca8/kornia_rs-0.1.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "2581ea7b30aeabd1c2666fcc25d34b58e48ac635a774aa79c649173f438cb9a3",
"md5": "e4e05716ca1c15ae1cfc1b62ea6cf1cc",
"sha256": "3b57fd6262ef932a3131dd211764bf184380742a2aea0a12c54949af7c61c2ac"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "e4e05716ca1c15ae1cfc1b62ea6cf1cc",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 2050407,
"upload_time": "2025-01-01T17:01:12",
"upload_time_iso_8601": "2025-01-01T17:01:12.495535Z",
"url": "https://files.pythonhosted.org/packages/25/81/ea7b30aeabd1c2666fcc25d34b58e48ac635a774aa79c649173f438cb9a3/kornia_rs-0.1.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "1806554954f6fcf752b3cba3b63b08eafe04fe485d069938f524180db28e0b2c",
"md5": "4396e021adac4d64451c7286056c985d",
"sha256": "06f60ff032ce9824b5fe746d1e1cca06ea3f5ba72b71a907a1c48f0e27094333"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "4396e021adac4d64451c7286056c985d",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 1694118,
"upload_time": "2025-01-01T17:01:15",
"upload_time_iso_8601": "2025-01-01T17:01:15.337099Z",
"url": "https://files.pythonhosted.org/packages/18/06/554954f6fcf752b3cba3b63b08eafe04fe485d069938f524180db28e0b2c/kornia_rs-0.1.8-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "838f9fec1b99f484e41e680cd1d7eb0948532d3fbf55547f53496019bf304fa7",
"md5": "66f30ecca95beae099d7cbbd7272fe30",
"sha256": "61b9822a68556198c5b526da939ddc3f9c630cab37c2d6bcf613c2de1bb3d088"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp311-cp311-macosx_10_12_x86_64.whl",
"has_sig": false,
"md5_digest": "66f30ecca95beae099d7cbbd7272fe30",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 1921457,
"upload_time": "2025-01-01T17:01:17",
"upload_time_iso_8601": "2025-01-01T17:01:17.002198Z",
"url": "https://files.pythonhosted.org/packages/83/8f/9fec1b99f484e41e680cd1d7eb0948532d3fbf55547f53496019bf304fa7/kornia_rs-0.1.8-cp311-cp311-macosx_10_12_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "866bf8b257bf88b0e167e9732c9190746a3a71fe4b9b6c8831529664285dedc4",
"md5": "d34354941e95c53a9279774eada72c13",
"sha256": "2dc98296aeeccf2536c1f8efa99d3c273962c7a07a8ae7c088de09ecc19543c4"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp311-cp311-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "d34354941e95c53a9279774eada72c13",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 1718902,
"upload_time": "2025-01-01T17:01:19",
"upload_time_iso_8601": "2025-01-01T17:01:19.812102Z",
"url": "https://files.pythonhosted.org/packages/86/6b/f8b257bf88b0e167e9732c9190746a3a71fe4b9b6c8831529664285dedc4/kornia_rs-0.1.8-cp311-cp311-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "0b1734501f53b4ce7608d5a43fb9e81e605433c0751367445a450a990e06d676",
"md5": "c5b5a4903d13e28f421bf8cdc6648136",
"sha256": "4968efcd26ca190977cfe84d38492a912ad95f13222473dbeb90f330aab51d82"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "c5b5a4903d13e28f421bf8cdc6648136",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 1823731,
"upload_time": "2025-01-01T17:01:21",
"upload_time_iso_8601": "2025-01-01T17:01:21.389161Z",
"url": "https://files.pythonhosted.org/packages/0b/17/34501f53b4ce7608d5a43fb9e81e605433c0751367445a450a990e06d676/kornia_rs-0.1.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "ebb946ffae8b1acfb00d08110440ce7ee00f0a92c0856829b76c0e10be394042",
"md5": "84215ea88275943e685e456664c35738",
"sha256": "b64be28fbac1f2e1bab3903b5016e1a957968fe43141ee7866c2ec5ebafc71ab"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "84215ea88275943e685e456664c35738",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 2050393,
"upload_time": "2025-01-01T17:01:24",
"upload_time_iso_8601": "2025-01-01T17:01:24.407128Z",
"url": "https://files.pythonhosted.org/packages/eb/b9/46ffae8b1acfb00d08110440ce7ee00f0a92c0856829b76c0e10be394042/kornia_rs-0.1.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "fe342270ec8702206a5a298ec2342b224148caf92421adac144f4e2362a9c676",
"md5": "be4497e49fdb6db9d4860545a3ddfa26",
"sha256": "2886f3a586728fe4a3586b3cc1df1dbea5d8984c74f77e23f5ab198441ec6e3c"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "be4497e49fdb6db9d4860545a3ddfa26",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 1692739,
"upload_time": "2025-01-01T17:01:27",
"upload_time_iso_8601": "2025-01-01T17:01:27.088475Z",
"url": "https://files.pythonhosted.org/packages/fe/34/2270ec8702206a5a298ec2342b224148caf92421adac144f4e2362a9c676/kornia_rs-0.1.8-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "b980a38fc51df8bccd14b710a71163aa848cab867cab5d478769bc5020df18cb",
"md5": "6b1302b6ec0d68cfd4483a0dfb6e0370",
"sha256": "983200f2b336dd832d81154295ff152195ade0228054ecbe7ac9ed7d5bf3b031"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp312-cp312-macosx_10_12_x86_64.whl",
"has_sig": false,
"md5_digest": "6b1302b6ec0d68cfd4483a0dfb6e0370",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 1917921,
"upload_time": "2025-01-01T17:01:30",
"upload_time_iso_8601": "2025-01-01T17:01:30.269810Z",
"url": "https://files.pythonhosted.org/packages/b9/80/a38fc51df8bccd14b710a71163aa848cab867cab5d478769bc5020df18cb/kornia_rs-0.1.8-cp312-cp312-macosx_10_12_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "c74fffd54d9096ccac335e94b58d1b5c55b49c98d0de280e522e0c70b383b2fc",
"md5": "682560a90a89cd99de777397ad87f021",
"sha256": "bf8a78b1fac32fe05974272c5659c6a2f8754d1c15372aa529e0b5802ea2daed"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp312-cp312-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "682560a90a89cd99de777397ad87f021",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 1713055,
"upload_time": "2025-01-01T17:01:31",
"upload_time_iso_8601": "2025-01-01T17:01:31.906144Z",
"url": "https://files.pythonhosted.org/packages/c7/4f/ffd54d9096ccac335e94b58d1b5c55b49c98d0de280e522e0c70b383b2fc/kornia_rs-0.1.8-cp312-cp312-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "ba4e9568a115bc69230fb43fed126ba1794ba42fb68354888a59bff879bcc960",
"md5": "04e1c48f4cc64571bb3bf3d161a8ffd9",
"sha256": "4ca82f982d92d3b90f462848557ebd1500ea02d65b38b032305d1966c3bbc153"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "04e1c48f4cc64571bb3bf3d161a8ffd9",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 1823184,
"upload_time": "2025-01-01T17:01:33",
"upload_time_iso_8601": "2025-01-01T17:01:33.706596Z",
"url": "https://files.pythonhosted.org/packages/ba/4e/9568a115bc69230fb43fed126ba1794ba42fb68354888a59bff879bcc960/kornia_rs-0.1.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "0a843bd78e98468665be72087b5669c4e02991b0ba82e5ec0c5bcbe0142f02d2",
"md5": "eaae6ce964d2ccf6ff236974906ad3f0",
"sha256": "297e48f800c93e7cc8b089e472b77a272f9887509ce9d8756fab0fa7714f8439"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "eaae6ce964d2ccf6ff236974906ad3f0",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 2049591,
"upload_time": "2025-01-01T17:01:35",
"upload_time_iso_8601": "2025-01-01T17:01:35.490018Z",
"url": "https://files.pythonhosted.org/packages/0a/84/3bd78e98468665be72087b5669c4e02991b0ba82e5ec0c5bcbe0142f02d2/kornia_rs-0.1.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "f36e2976bf8c182cced282ba8c6583b0d1f008fecbe3b0ca6324ed367872e58a",
"md5": "34abbf71af6e92e5ce17f735e5c2ff23",
"sha256": "dba6d86df9d3bb3e99f2d6017b9939b9e2683929277e959d11ea86fb3153eaec"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp312-cp312-win_amd64.whl",
"has_sig": false,
"md5_digest": "34abbf71af6e92e5ce17f735e5c2ff23",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 1693398,
"upload_time": "2025-01-01T17:01:37",
"upload_time_iso_8601": "2025-01-01T17:01:37.058623Z",
"url": "https://files.pythonhosted.org/packages/f3/6e/2976bf8c182cced282ba8c6583b0d1f008fecbe3b0ca6324ed367872e58a/kornia_rs-0.1.8-cp312-cp312-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "8ec7a086f0f48e25c7a00fc376d41c20821293acd030d07b2329382a314eb6d9",
"md5": "e6110cad887a21addf38d5aae58338ce",
"sha256": "9197fc690b79562ff745a9ebda05c1408b9938045aecbbdafeaa8aed1f238b31"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp313-cp313-macosx_10_12_x86_64.whl",
"has_sig": false,
"md5_digest": "e6110cad887a21addf38d5aae58338ce",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.8",
"size": 1918007,
"upload_time": "2025-01-01T17:01:40",
"upload_time_iso_8601": "2025-01-01T17:01:40.291869Z",
"url": "https://files.pythonhosted.org/packages/8e/c7/a086f0f48e25c7a00fc376d41c20821293acd030d07b2329382a314eb6d9/kornia_rs-0.1.8-cp313-cp313-macosx_10_12_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "dcb2a75a260d5f0ae2623a4fd3ee8f844b9b54bdd157566e25e95b2b698a9a7d",
"md5": "f91105797c13cd2c03529cda2606de59",
"sha256": "1014eac46dd75c8ba9ca61579593d77b84918236877fcae9dca362ff5d6960e4"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp313-cp313-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "f91105797c13cd2c03529cda2606de59",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.8",
"size": 1713206,
"upload_time": "2025-01-01T17:01:41",
"upload_time_iso_8601": "2025-01-01T17:01:41.930221Z",
"url": "https://files.pythonhosted.org/packages/dc/b2/a75a260d5f0ae2623a4fd3ee8f844b9b54bdd157566e25e95b2b698a9a7d/kornia_rs-0.1.8-cp313-cp313-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "bbe69f3e1798718b5988c761a79f37782065c49464e4324fd49c5b0ab2e57610",
"md5": "128bb4bb8bbb8f7dce98c54bd8d0624b",
"sha256": "c7d7c90c6244a37e0d1994e532ddf3484b3e7f767c54121d514feda83974a934"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "128bb4bb8bbb8f7dce98c54bd8d0624b",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.8",
"size": 1823437,
"upload_time": "2025-01-01T17:01:44",
"upload_time_iso_8601": "2025-01-01T17:01:44.071828Z",
"url": "https://files.pythonhosted.org/packages/bb/e6/9f3e1798718b5988c761a79f37782065c49464e4324fd49c5b0ab2e57610/kornia_rs-0.1.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "b7719b37dd1f60bd486e1b786df1a0c82696b1bc0992d2de7b281134618c0486",
"md5": "1f656ca04b4c63b0df30a3a28e207bdf",
"sha256": "2ef0c4a19103ff9c3c7e7acb2a7db0a276a0ab1ea1c19fe151aea384a98cd63c"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "1f656ca04b4c63b0df30a3a28e207bdf",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.8",
"size": 2049635,
"upload_time": "2025-01-01T17:01:45",
"upload_time_iso_8601": "2025-01-01T17:01:45.593435Z",
"url": "https://files.pythonhosted.org/packages/b7/71/9b37dd1f60bd486e1b786df1a0c82696b1bc0992d2de7b281134618c0486/kornia_rs-0.1.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "27b6fb26cce38f7cfc887c9c967a0467c1ed348fa6d1e0f1d02c063b8f482043",
"md5": "7e41bbdd96a06c78131d49e25b290fee",
"sha256": "434fb087e2caef5b2ecd5222ea54cc443e907851b708be15142bc65ae82cef63"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp313-cp313-win_amd64.whl",
"has_sig": false,
"md5_digest": "7e41bbdd96a06c78131d49e25b290fee",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.8",
"size": 1693865,
"upload_time": "2025-01-01T17:01:47",
"upload_time_iso_8601": "2025-01-01T17:01:47.065650Z",
"url": "https://files.pythonhosted.org/packages/27/b6/fb26cce38f7cfc887c9c967a0467c1ed348fa6d1e0f1d02c063b8f482043/kornia_rs-0.1.8-cp313-cp313-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "b6ee9460360b052d5e91a5adcab11d6fe58dc188efe7f4a0592a550e9132a10e",
"md5": "43d55f9744b3e3bb7689b44260b25199",
"sha256": "db56ba011f96cb15139a00828370b587e0a0a4287c7d8f004bf1b97e7581e341"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp37-cp37m-macosx_10_12_x86_64.whl",
"has_sig": false,
"md5_digest": "43d55f9744b3e3bb7689b44260b25199",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": ">=3.8",
"size": 1926280,
"upload_time": "2025-01-01T17:01:49",
"upload_time_iso_8601": "2025-01-01T17:01:49.766664Z",
"url": "https://files.pythonhosted.org/packages/b6/ee/9460360b052d5e91a5adcab11d6fe58dc188efe7f4a0592a550e9132a10e/kornia_rs-0.1.8-cp37-cp37m-macosx_10_12_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "7a73b000d1122fa692782c9fd3e369acc9301dc0276432e26e6544e11d170200",
"md5": "78b1ffb38045e83a63ffc828ad914cf8",
"sha256": "58f8b6ed43e08d04d77a09573f7904d62046b9b8df53b537ffd3ff94a495b746"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp37-cp37m-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "78b1ffb38045e83a63ffc828ad914cf8",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": ">=3.8",
"size": 1719423,
"upload_time": "2025-01-01T17:01:52",
"upload_time_iso_8601": "2025-01-01T17:01:52.617376Z",
"url": "https://files.pythonhosted.org/packages/7a/73/b000d1122fa692782c9fd3e369acc9301dc0276432e26e6544e11d170200/kornia_rs-0.1.8-cp37-cp37m-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "dce184a7dabf4196f13df7fc97e3757d2297a3796cd09c7e35623c73f3dab55f",
"md5": "a1d8c5ea6a395c9491cb78f4de570b51",
"sha256": "992d04a63f382185424127f29ad8db8e258a6d906c6d9c29529e46ca59d4ab43"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "a1d8c5ea6a395c9491cb78f4de570b51",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": ">=3.8",
"size": 1825039,
"upload_time": "2025-01-01T17:01:55",
"upload_time_iso_8601": "2025-01-01T17:01:55.775164Z",
"url": "https://files.pythonhosted.org/packages/dc/e1/84a7dabf4196f13df7fc97e3757d2297a3796cd09c7e35623c73f3dab55f/kornia_rs-0.1.8-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "59eb439d1328d74a228b59340934a649992504c41342b66968b5300da2702665",
"md5": "5ad41d988176cfb496f0d43d650b1cb1",
"sha256": "8d42a21858fbc416669bc6fd3a31ad1082733a288e03c906cad44945bccd6d60"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "5ad41d988176cfb496f0d43d650b1cb1",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": ">=3.8",
"size": 2052043,
"upload_time": "2025-01-01T17:01:57",
"upload_time_iso_8601": "2025-01-01T17:01:57.489545Z",
"url": "https://files.pythonhosted.org/packages/59/eb/439d1328d74a228b59340934a649992504c41342b66968b5300da2702665/kornia_rs-0.1.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "ae2b1d6ed91bddd52191e844613799f762a2e7277556dcde43e5b905c9c8fc57",
"md5": "c7d99b3811bfb0ee1b688b9f439881e8",
"sha256": "4d846492d6651c3e04205c04cbc21e3b37122c0ce5208fe40f1ed367d07257e1"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp37-cp37m-win_amd64.whl",
"has_sig": false,
"md5_digest": "c7d99b3811bfb0ee1b688b9f439881e8",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": ">=3.8",
"size": 1693459,
"upload_time": "2025-01-01T17:01:59",
"upload_time_iso_8601": "2025-01-01T17:01:59.096431Z",
"url": "https://files.pythonhosted.org/packages/ae/2b/1d6ed91bddd52191e844613799f762a2e7277556dcde43e5b905c9c8fc57/kornia_rs-0.1.8-cp37-cp37m-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "6f3853573ceb8f97372bbb1d999fc63ecf640cb5809275ccdd934f396b72a56d",
"md5": "c8c717e38cb06a6b7d0d99a41fe87a76",
"sha256": "420f89bbe13d9a83dc82e71cb543182b7104dcf7ab40da36c5bbfca1683d7ccc"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp38-cp38-macosx_10_12_x86_64.whl",
"has_sig": false,
"md5_digest": "c8c717e38cb06a6b7d0d99a41fe87a76",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8",
"size": 1926122,
"upload_time": "2025-01-01T17:02:00",
"upload_time_iso_8601": "2025-01-01T17:02:00.710246Z",
"url": "https://files.pythonhosted.org/packages/6f/38/53573ceb8f97372bbb1d999fc63ecf640cb5809275ccdd934f396b72a56d/kornia_rs-0.1.8-cp38-cp38-macosx_10_12_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "8936b8996124425002022f6caff1c574f07142b0b658f04e1bd89902a663e560",
"md5": "ae25bc7beb31f9e0df116304eea0fb97",
"sha256": "66590d87b75ff38656c5976718c875536a1526549041fc29114db31202574114"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp38-cp38-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "ae25bc7beb31f9e0df116304eea0fb97",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8",
"size": 1720104,
"upload_time": "2025-01-01T17:02:03",
"upload_time_iso_8601": "2025-01-01T17:02:03.795629Z",
"url": "https://files.pythonhosted.org/packages/89/36/b8996124425002022f6caff1c574f07142b0b658f04e1bd89902a663e560/kornia_rs-0.1.8-cp38-cp38-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "4b83adffb59ec01015b0bfd3bd1326302e14b2e814ad41b4b4ee4225d9d486a4",
"md5": "55dbec286e8d59bf1892a26e64c26c2a",
"sha256": "9405009b248221c01c124c6c3d48c6a3e624fad4103a5b006a4289b0fbfad9cd"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "55dbec286e8d59bf1892a26e64c26c2a",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8",
"size": 1824392,
"upload_time": "2025-01-01T17:02:06",
"upload_time_iso_8601": "2025-01-01T17:02:06.963675Z",
"url": "https://files.pythonhosted.org/packages/4b/83/adffb59ec01015b0bfd3bd1326302e14b2e814ad41b4b4ee4225d9d486a4/kornia_rs-0.1.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "06cd5ca1338b64572a4f05f9e861a977bf60793bbc30d9183b827dd53659b930",
"md5": "97b79698eb2b61c96ab79f674b1a2747",
"sha256": "77af8b8758db1edf59fdbf1c1e2a62bda79f76317e7f61854be4ada38d8a96cc"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "97b79698eb2b61c96ab79f674b1a2747",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8",
"size": 2051007,
"upload_time": "2025-01-01T17:02:08",
"upload_time_iso_8601": "2025-01-01T17:02:08.473740Z",
"url": "https://files.pythonhosted.org/packages/06/cd/5ca1338b64572a4f05f9e861a977bf60793bbc30d9183b827dd53659b930/kornia_rs-0.1.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "b9df5177ee1cbc07fd7ea9cd9d91f532f90c8fe04398068e001c6c7233a95bed",
"md5": "a1afe4fdbf338b0f9cdb857eece9c8d5",
"sha256": "d053bfbf4ef05c5225b5bcb04aca7ef03cd3e0bfbbeae4f08f8465577f196880"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp38-cp38-win_amd64.whl",
"has_sig": false,
"md5_digest": "a1afe4fdbf338b0f9cdb857eece9c8d5",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8",
"size": 1695105,
"upload_time": "2025-01-01T17:02:11",
"upload_time_iso_8601": "2025-01-01T17:02:11.494434Z",
"url": "https://files.pythonhosted.org/packages/b9/df/5177ee1cbc07fd7ea9cd9d91f532f90c8fe04398068e001c6c7233a95bed/kornia_rs-0.1.8-cp38-cp38-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "1b265f8d319eff97223239330577c060b5eb94cbb072926a532f2ff119f16cd1",
"md5": "6c090e80255c4a9f8fd10e8a5d4e8776",
"sha256": "c7555eb7f5586a5ad4e0cf528d972b06335cc9cde429a8bb0115ef876d9e105e"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp39-cp39-macosx_10_12_x86_64.whl",
"has_sig": false,
"md5_digest": "6c090e80255c4a9f8fd10e8a5d4e8776",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 1926133,
"upload_time": "2025-01-01T17:02:13",
"upload_time_iso_8601": "2025-01-01T17:02:13.266587Z",
"url": "https://files.pythonhosted.org/packages/1b/26/5f8d319eff97223239330577c060b5eb94cbb072926a532f2ff119f16cd1/kornia_rs-0.1.8-cp39-cp39-macosx_10_12_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "2f3b348878efd6204855c4b717b09535f430fdb02016a1067810f090c82c59d5",
"md5": "a3448e8c8a143ab3799141444ea90ed6",
"sha256": "23b4aed00ee6d34300e6e2406ddb130a3ef07af7698a6aaf86a08b64cfe149b5"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp39-cp39-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "a3448e8c8a143ab3799141444ea90ed6",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 1720259,
"upload_time": "2025-01-01T17:02:14",
"upload_time_iso_8601": "2025-01-01T17:02:14.752142Z",
"url": "https://files.pythonhosted.org/packages/2f/3b/348878efd6204855c4b717b09535f430fdb02016a1067810f090c82c59d5/kornia_rs-0.1.8-cp39-cp39-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "e85bfb954cc5ba289241b5db6377ff9b9cfeab93edd77727a029f5d3d941a207",
"md5": "0cc22744ae2dc123060fbdf827a7bfe3",
"sha256": "283aa6203c3217734d02696877b455081d14eeb8b0cfa4740919078f90a6da74"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "0cc22744ae2dc123060fbdf827a7bfe3",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 1824832,
"upload_time": "2025-01-01T17:02:16",
"upload_time_iso_8601": "2025-01-01T17:02:16.202451Z",
"url": "https://files.pythonhosted.org/packages/e8/5b/fb954cc5ba289241b5db6377ff9b9cfeab93edd77727a029f5d3d941a207/kornia_rs-0.1.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "4da79d3ec3d7ca73efdca75570035d2a7d72b04c08cd5fa25d9207efb01b409c",
"md5": "01dc7cbea525ba5ab9f444eae027b25e",
"sha256": "21a303660b5e66b1cb9dd30033d075790d2e8b879e65db073a3d87c7710e0bda"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "01dc7cbea525ba5ab9f444eae027b25e",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 2052374,
"upload_time": "2025-01-01T17:02:17",
"upload_time_iso_8601": "2025-01-01T17:02:17.715662Z",
"url": "https://files.pythonhosted.org/packages/4d/a7/9d3ec3d7ca73efdca75570035d2a7d72b04c08cd5fa25d9207efb01b409c/kornia_rs-0.1.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "9423bd6a4e482cb08d106c9c1b51e85596c72cdd3dc4584180894277d6338936",
"md5": "f53868eb8ac5f4e439633e7f0dd60b2b",
"sha256": "ff12844b8e92ff5805827cb04f1d5130c07798d023d9c17f33d4eab7bc72dbdf"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "f53868eb8ac5f4e439633e7f0dd60b2b",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 1694996,
"upload_time": "2025-01-01T17:02:19",
"upload_time_iso_8601": "2025-01-01T17:02:19.129155Z",
"url": "https://files.pythonhosted.org/packages/94/23/bd6a4e482cb08d106c9c1b51e85596c72cdd3dc4584180894277d6338936/kornia_rs-0.1.8-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "c68f931f6273d712ba80e2d4cd83f4d43c406fcbc7a8f2758ff69f4ed62a1eb0",
"md5": "f1ee11f69fcb69bab8b2a3a691500099",
"sha256": "519e05f51deb4c8e849889292b9c109e0ea0943ae5024685781c35018effafd9"
},
"downloads": -1,
"filename": "kornia_rs-0.1.8.tar.gz",
"has_sig": false,
"md5_digest": "f1ee11f69fcb69bab8b2a3a691500099",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 75377,
"upload_time": "2025-01-01T17:02:20",
"upload_time_iso_8601": "2025-01-01T17:02:20.460919Z",
"url": "https://files.pythonhosted.org/packages/c6/8f/931f6273d712ba80e2d4cd83f4d43c406fcbc7a8f2758ff69f4ed62a1eb0/kornia_rs-0.1.8.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-01 17:02:20",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "kornia",
"github_project": "kornia-rs",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "kornia-rs"
}