[](https://discord.gg/qUtxnK2NMf)
# KosmosG
My implementation of the model KosmosG from "KOSMOS-G: Generating Images in Context with Multimodal Large Language Models"
## Installation
`pip install kosmosg`
## Usage
```python
import torch
from kosmosg.main import KosmosG
# usage
img = torch.randn(1, 3, 256, 256)
text = torch.randint(0, 20000, (1, 1024))
model = KosmosG()
output = model(img, text)
print(output)
```
## Architecture
`text, image => KosmosG => text tokens with multi modality understanding`
## License
MIT
## Todo
- Create Aligner in pytorch
- Create Diffusion module
- Integrate these pieces
- Create a training script
Raw data
{
"_id": null,
"home_page": "https://github.com/kyegomez/KosmosG",
"name": "kosmosg",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6,<4.0",
"maintainer_email": "",
"keywords": "artificial intelligence,deep learning,optimizers,Prompt Engineering",
"author": "Kye Gomez",
"author_email": "kye@apac.ai",
"download_url": "https://files.pythonhosted.org/packages/26/7a/7ef1e2efb021c0318b7a0c44eb9f65a1b22a684845885795022b537e4a1e/kosmosg-0.0.4.tar.gz",
"platform": null,
"description": "[](https://discord.gg/qUtxnK2NMf)\n\n# KosmosG\nMy implementation of the model KosmosG from \"KOSMOS-G: Generating Images in Context with Multimodal Large Language Models\"\n\n## Installation\n`pip install kosmosg`\n\n## Usage\n```python\nimport torch\nfrom kosmosg.main import KosmosG\n\n# usage\nimg = torch.randn(1, 3, 256, 256)\ntext = torch.randint(0, 20000, (1, 1024))\n\nmodel = KosmosG()\noutput = model(img, text)\nprint(output)\n```\n\n## Architecture\n`text, image => KosmosG => text tokens with multi modality understanding`\n\n## License\nMIT\n\n## Todo\n- Create Aligner in pytorch\n- Create Diffusion module\n- Integrate these pieces\n- Create a training script",
"bugtrack_url": null,
"license": "MIT",
"summary": "kosmosg - Pytorch",
"version": "0.0.4",
"project_urls": {
"Homepage": "https://github.com/kyegomez/KosmosG",
"Repository": "https://github.com/kyegomez/KosmosG"
},
"split_keywords": [
"artificial intelligence",
"deep learning",
"optimizers",
"prompt engineering"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "8ede5461107f228385baa151c4309d95a7d625f3816c4644a7992ec9b47e4486",
"md5": "99c09c2d402e87bc36e4e5b251a626ea",
"sha256": "ae7206b315c6ab15f77fe63d94b26bb72d43216bdfef879f1187beca64731750"
},
"downloads": -1,
"filename": "kosmosg-0.0.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "99c09c2d402e87bc36e4e5b251a626ea",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6,<4.0",
"size": 4800,
"upload_time": "2023-10-25T16:55:51",
"upload_time_iso_8601": "2023-10-25T16:55:51.244095Z",
"url": "https://files.pythonhosted.org/packages/8e/de/5461107f228385baa151c4309d95a7d625f3816c4644a7992ec9b47e4486/kosmosg-0.0.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "267a7ef1e2efb021c0318b7a0c44eb9f65a1b22a684845885795022b537e4a1e",
"md5": "5a9caa3691519dd5b381384ebd4aab1e",
"sha256": "2721a5d38684c47e2452717c44e5cdf039ea73de67a941da1ca2e13d861631b1"
},
"downloads": -1,
"filename": "kosmosg-0.0.4.tar.gz",
"has_sig": false,
"md5_digest": "5a9caa3691519dd5b381384ebd4aab1e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6,<4.0",
"size": 4665,
"upload_time": "2023-10-25T16:55:52",
"upload_time_iso_8601": "2023-10-25T16:55:52.372087Z",
"url": "https://files.pythonhosted.org/packages/26/7a/7ef1e2efb021c0318b7a0c44eb9f65a1b22a684845885795022b537e4a1e/kosmosg-0.0.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-10-25 16:55:52",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "kyegomez",
"github_project": "KosmosG",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "kosmosg"
}