kozhindev-clearml-wrapper


Namekozhindev-clearml-wrapper JSON
Version 0.0.2 PyPI version JSON
download
home_pageNone
SummaryWrapper over clearml, developed by ML team of KozhinDev company
upload_time2025-09-03 05:19:50
maintainerNone
docs_urlNone
authorYVoskanyan
requires_python>=3.9
licenseNone
keywords clearml-wrapper clearml wrapper
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # KozhinDev ClearML Wrapper
A set of utility functions and decorators for simplifying ClearML integration in your ML projects  
## Features

- **`log_metrics`** – decorator for logging scalar metrics  
- **`get_local_dataset_path`** – get local path to a dataset file/folder  
- **`prepare_task`** – initialize or retrieve ClearML tasks (local or remote)  
- **`get_local_model_path`** – retrieve a local copy of a model artifact

First, install the library: ```pip install kozhindev_clearml_wrapper```
# Usage
1. Logging metrics  
Use the @log_metrics decorator to log scalar metrics to ClearML:
```python
from clearml import Task
from kozhindev_clearml_wrapper import log_metrics

task = Task.init(project_name="Demo", task_name="Log Metrics Example")

@log_metrics(task)
def train():
    for i in range(5):
        yield "loss", "train", 0.1 * i, i  # (title, series, metric, iteration)

train()
```
2. Get Local Dataset Path  
Retrieve a dataset by ID and get the local path to a file or folder inside it:
```python
from kozhindev_clearml_wrapper import get_local_dataset_path

dataset_path = get_local_dataset_path(
    dataset_id="your-dataset-id",
    dataset_name="data.csv"
)

print(dataset_path)
```
3. Prepare ClearML Task  
Initialize a new task (local) or connect to an existing one (remote):
```python
from kozhindev_clearml_wrapper import prepare_task

# Local task (creates a new one)
task = prepare_task(
    task_type="local",
    project_name="Demo",
    task_name="Local Task Example"
)

# Remote task (connects training parameters to the current ClearML task)
train_params = {"learning_rate": 0.001, "epochs": 10}
task = prepare_task(
    task_type="remote",
    train_params=train_params
)
```
4. Get Local Model Path  
Download and get the local path to a model artifact from a specific task:
```python
from kozhindev_clearml_wrapper import get_local_model_path

path_to_model = get_local_model_path(
    task_id="your-task-id",
    artifact_name="trained_models"
)

print(path_to_model)
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "kozhindev-clearml-wrapper",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "clearml-wrapper clearml wrapper",
    "author": "YVoskanyan",
    "author_email": "yuvoskanyan@team.kozhin.dev",
    "download_url": "https://files.pythonhosted.org/packages/03/b2/8f4d793f034bbd677f605e44a37f16344bf466e79d314cf4dcca92c93cdf/kozhindev_clearml_wrapper-0.0.2.tar.gz",
    "platform": null,
    "description": "# KozhinDev ClearML Wrapper\nA set of utility functions and decorators for simplifying ClearML integration in your ML projects  \n## Features\n\n- **`log_metrics`** \u2013 decorator for logging scalar metrics  \n- **`get_local_dataset_path`** \u2013 get local path to a dataset file/folder  \n- **`prepare_task`** \u2013 initialize or retrieve ClearML tasks (local or remote)  \n- **`get_local_model_path`** \u2013 retrieve a local copy of a model artifact\n\nFirst, install the library: ```pip install kozhindev_clearml_wrapper```\n# Usage\n1. Logging metrics  \nUse the @log_metrics decorator to log scalar metrics to ClearML:\n```python\nfrom clearml import Task\nfrom kozhindev_clearml_wrapper import log_metrics\n\ntask = Task.init(project_name=\"Demo\", task_name=\"Log Metrics Example\")\n\n@log_metrics(task)\ndef train():\n    for i in range(5):\n        yield \"loss\", \"train\", 0.1 * i, i  # (title, series, metric, iteration)\n\ntrain()\n```\n2. Get Local Dataset Path  \nRetrieve a dataset by ID and get the local path to a file or folder inside it:\n```python\nfrom kozhindev_clearml_wrapper import get_local_dataset_path\n\ndataset_path = get_local_dataset_path(\n    dataset_id=\"your-dataset-id\",\n    dataset_name=\"data.csv\"\n)\n\nprint(dataset_path)\n```\n3. Prepare ClearML Task  \nInitialize a new task (local) or connect to an existing one (remote):\n```python\nfrom kozhindev_clearml_wrapper import prepare_task\n\n# Local task (creates a new one)\ntask = prepare_task(\n    task_type=\"local\",\n    project_name=\"Demo\",\n    task_name=\"Local Task Example\"\n)\n\n# Remote task (connects training parameters to the current ClearML task)\ntrain_params = {\"learning_rate\": 0.001, \"epochs\": 10}\ntask = prepare_task(\n    task_type=\"remote\",\n    train_params=train_params\n)\n```\n4. Get Local Model Path  \nDownload and get the local path to a model artifact from a specific task:\n```python\nfrom kozhindev_clearml_wrapper import get_local_model_path\n\npath_to_model = get_local_model_path(\n    task_id=\"your-task-id\",\n    artifact_name=\"trained_models\"\n)\n\nprint(path_to_model)\n```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Wrapper over clearml, developed by ML team of KozhinDev company",
    "version": "0.0.2",
    "project_urls": null,
    "split_keywords": [
        "clearml-wrapper",
        "clearml",
        "wrapper"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "6c6bbc6901249656fe9d7c564605a5899734b000e1a33c920ea1be949cb25489",
                "md5": "c42def215dd497fdaba159042f66d2aa",
                "sha256": "4ee16aa05ec92b6b237da08dfac66af2cdacfc5627d44d7c6d7fed1397f530bf"
            },
            "downloads": -1,
            "filename": "kozhindev_clearml_wrapper-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c42def215dd497fdaba159042f66d2aa",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 4705,
            "upload_time": "2025-09-03T05:19:48",
            "upload_time_iso_8601": "2025-09-03T05:19:48.735610Z",
            "url": "https://files.pythonhosted.org/packages/6c/6b/bc6901249656fe9d7c564605a5899734b000e1a33c920ea1be949cb25489/kozhindev_clearml_wrapper-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "03b28f4d793f034bbd677f605e44a37f16344bf466e79d314cf4dcca92c93cdf",
                "md5": "c8f603cfcbf47faaf2d3e2751be5de00",
                "sha256": "e0150e99a06c14d26dfc1e152a8e4b95cc6430801268f948472b22d1d676cd95"
            },
            "downloads": -1,
            "filename": "kozhindev_clearml_wrapper-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "c8f603cfcbf47faaf2d3e2751be5de00",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 4024,
            "upload_time": "2025-09-03T05:19:50",
            "upload_time_iso_8601": "2025-09-03T05:19:50.078464Z",
            "url": "https://files.pythonhosted.org/packages/03/b2/8f4d793f034bbd677f605e44a37f16344bf466e79d314cf4dcca92c93cdf/kozhindev_clearml_wrapper-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-03 05:19:50",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "kozhindev-clearml-wrapper"
}
        
Elapsed time: 0.71226s