[![Actions Status](https://github.com/pln-fing-udelar/fast-krippendorff/workflows/CI/badge.svg)](https://github.com/pln-fing-udelar/fast-krippendorff/actions)
[![Version](https://img.shields.io/pypi/v/krippendorff.svg)](https://pypi.python.org/pypi/krippendorff)
[![License](https://img.shields.io/pypi/l/krippendorff.svg)](https://pypi.python.org/pypi/krippendorff)
[![Supported Python versions](https://img.shields.io/pypi/pyversions/krippendorff.svg)](https://pypi.python.org/pypi/krippendorff)
# Fast Krippendorff
Fast computation of [Krippendorff's alpha](https://en.wikipedia.org/wiki/Krippendorff%27s_alpha) agreement measure.
Based on [Thomas Grill implementation](https://github.com/grrrr/krippendorff-alpha).
## Example usage
Given a reliability data matrix, run:
```python
import krippendorff
krippendorff.alpha(reliability_data=...)
```
See `sample.py` and `alpha`'s docstring for more details.
## Installation
```bash
pip install krippendorff
```
## Caveats
The implementation is fast as it doesn't do a nested loop for the coders. However, `V` should be small, since a `VxV` matrix it's used.
## Citing
If you use this code in your research, please cite Fast Krippendorff:
```bibtex
@misc{castro-2017-fast-krippendorff,
author = {Santiago Castro},
title = {Fast {K}rippendorff: Fast computation of {K}rippendorff's alpha agreement measure},
year = {2017},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/pln-fing-udelar/fast-krippendorff}}
}
```
Raw data
{
"_id": null,
"home_page": null,
"name": "krippendorff",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "Krippendorff, agreement, alpha, coders, coding, reliability, units, values",
"author": null,
"author_email": "Santiago Castro <sacastro@fing.edu.uy>",
"download_url": "https://files.pythonhosted.org/packages/ce/fc/a216ab428e10357fda0cea2d56e9a3728feecb54e32af6cd7e1f894d39e3/krippendorff-0.8.1.tar.gz",
"platform": null,
"description": "[![Actions Status](https://github.com/pln-fing-udelar/fast-krippendorff/workflows/CI/badge.svg)](https://github.com/pln-fing-udelar/fast-krippendorff/actions)\n[![Version](https://img.shields.io/pypi/v/krippendorff.svg)](https://pypi.python.org/pypi/krippendorff)\n[![License](https://img.shields.io/pypi/l/krippendorff.svg)](https://pypi.python.org/pypi/krippendorff)\n[![Supported Python versions](https://img.shields.io/pypi/pyversions/krippendorff.svg)](https://pypi.python.org/pypi/krippendorff)\n\n# Fast Krippendorff\n\nFast computation of [Krippendorff's alpha](https://en.wikipedia.org/wiki/Krippendorff%27s_alpha) agreement measure.\n\nBased on [Thomas Grill implementation](https://github.com/grrrr/krippendorff-alpha).\n\n## Example usage\n\nGiven a reliability data matrix, run:\n\n```python\nimport krippendorff\n\nkrippendorff.alpha(reliability_data=...)\n```\n\nSee `sample.py` and `alpha`'s docstring for more details.\n\n## Installation\n\n```bash\npip install krippendorff\n```\n\n## Caveats\n\nThe implementation is fast as it doesn't do a nested loop for the coders. However, `V` should be small, since a `VxV` matrix it's used.\n\n## Citing\n\nIf you use this code in your research, please cite Fast Krippendorff:\n\n```bibtex\n@misc{castro-2017-fast-krippendorff,\n author = {Santiago Castro},\n title = {Fast {K}rippendorff: Fast computation of {K}rippendorff's alpha agreement measure},\n year = {2017},\n publisher = {GitHub},\n journal = {GitHub repository},\n howpublished = {\\url{https://github.com/pln-fing-udelar/fast-krippendorff}}\n}\n```\n",
"bugtrack_url": null,
"license": null,
"summary": "Fast computation of the Krippendorff's alpha measure.",
"version": "0.8.1",
"project_urls": {
"Bug Tracker": "https://github.com/pln-fing-udelar/fast-krippendorff/issues",
"Changelog": "https://github.com/pln-fing-udelar/fast-krippendorff/releases",
"Documentation": "https://github.com/pln-fing-udelar/fast-krippendorff",
"Homepage": "https://github.com/pln-fing-udelar/fast-krippendorff",
"Repository": "https://github.com/pln-fing-udelar/fast-krippendorff"
},
"split_keywords": [
"krippendorff",
" agreement",
" alpha",
" coders",
" coding",
" reliability",
" units",
" values"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "a54f019ebcd010b4e8bba59db099462155d78d928652b99958b10fcac700c4c5",
"md5": "491ef5834113ff292aa2ba501f98cf77",
"sha256": "afd9ba1adf8866f567abb643312aedc92d39b5b8612f99b68998508e3591c437"
},
"downloads": -1,
"filename": "krippendorff-0.8.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "491ef5834113ff292aa2ba501f98cf77",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 18182,
"upload_time": "2025-01-15T05:00:42",
"upload_time_iso_8601": "2025-01-15T05:00:42.197118Z",
"url": "https://files.pythonhosted.org/packages/a5/4f/019ebcd010b4e8bba59db099462155d78d928652b99958b10fcac700c4c5/krippendorff-0.8.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "cefca216ab428e10357fda0cea2d56e9a3728feecb54e32af6cd7e1f894d39e3",
"md5": "2db7cf0a60abc0c6dbf184b1b650fb68",
"sha256": "a8f73d87411a69b2ada62ce60573e1b99388bb084c8c0fa7b4d3598edcf3c0be"
},
"downloads": -1,
"filename": "krippendorff-0.8.1.tar.gz",
"has_sig": false,
"md5_digest": "2db7cf0a60abc0c6dbf184b1b650fb68",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 24160,
"upload_time": "2025-01-15T05:00:44",
"upload_time_iso_8601": "2025-01-15T05:00:44.567899Z",
"url": "https://files.pythonhosted.org/packages/ce/fc/a216ab428e10357fda0cea2d56e9a3728feecb54e32af6cd7e1f894d39e3/krippendorff-0.8.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-15 05:00:44",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pln-fing-udelar",
"github_project": "fast-krippendorff",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "krippendorff"
}