# KsegClassifier
Principal Curves based classifier in two versios: One-Class and MultiClass.
This algorithm is free for use (MIT Licence)
When the algorithm use, we ask to reference our research paper about:
de Melo Borges, F.E., Mota, O.F., Ferreira, D.D. et al. One-class classifier based on principal curves. Neural Comput & Applic (2023). https://doi.org/10.1007/s00521-023-08721-8
This current version includes the pip repo, you can install the module using the pip command:
pip install kseg-py
The pip's link is https://pypi.org/project/kseg-py/
The example file shows the operation of the module in its 3 different applications.
Raw data
{
"_id": null,
"home_page": "https://github.com/fmborges2/PC_Classifier/",
"name": "kseg-py",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "principal curves,k segments",
"author": "Fernando Elias de Melo Borges",
"author_email": "fernandoelias.mb@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/a0/9e/db76ba8d58940c1c527e076992e3341a8dfdd6afbe26683d65ea252873f1/kseg_py-0.1.0.tar.gz",
"platform": null,
"description": "# KsegClassifier\r\nPrincipal Curves based classifier in two versios: One-Class and MultiClass.\r\nThis algorithm is free for use (MIT Licence)\r\nWhen the algorithm use, we ask to reference our research paper about:\r\nde Melo Borges, F.E., Mota, O.F., Ferreira, D.D. et al. One-class classifier based on principal curves. Neural Comput & Applic (2023). https://doi.org/10.1007/s00521-023-08721-8\r\n\r\nThis current version includes the pip repo, you can install the module using the pip command:\r\n\r\npip install kseg-py\r\n\r\nThe pip's link is https://pypi.org/project/kseg-py/\r\n\r\nThe example file shows the operation of the module in its 3 different applications.\r\n",
"bugtrack_url": null,
"license": "MIT License",
"summary": "K-segments for Principal Curves Extraction in Python",
"version": "0.1.0",
"project_urls": {
"Homepage": "https://github.com/fmborges2/PC_Classifier/"
},
"split_keywords": [
"principal curves",
"k segments"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "a09edb76ba8d58940c1c527e076992e3341a8dfdd6afbe26683d65ea252873f1",
"md5": "523bd682a8f794dbb022d6b219736e13",
"sha256": "32421d1b9ede1a3dd5532a9a895ec08fd6485df4afaace09ae3f41db593c0d56"
},
"downloads": -1,
"filename": "kseg_py-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "523bd682a8f794dbb022d6b219736e13",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 8656,
"upload_time": "2023-11-19T03:32:57",
"upload_time_iso_8601": "2023-11-19T03:32:57.600830Z",
"url": "https://files.pythonhosted.org/packages/a0/9e/db76ba8d58940c1c527e076992e3341a8dfdd6afbe26683d65ea252873f1/kseg_py-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-11-19 03:32:57",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "fmborges2",
"github_project": "PC_Classifier",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "kseg-py"
}